
Use R !

Paulo Cortez

Modern
Optimization
with R

Use R!

Series Editors:
Robert Gentleman Kurt Hornik Giovanni Parmigiani

More information about this series at http://www.springer.com/series/6991

http://www.springer.com/series/6991

Use R!

Albert: Bayesian Computation with R (2nd ed. 2009)
Bivand/Pebesma/Gómez-Rubio: Applied Spatial Data Analysis with R (2nd ed.

2013)
Cook/Swayne: Interactive and Dynamic Graphics for Data Analysis:

With R and GGobi
Hahne/Huber/Gentleman/Falcon: Bioconductor Case Studies
Paradis: Analysis of Phylogenetics and Evolution with R (2nd ed. 2012)
Pfaff: Analysis of Integrated and Cointegrated Time Series with R (2nd ed. 2008)
Sarkar: Lattice: Multivariate Data Visualization with R
Spector: Data Manipulation with R

Paulo Cortez

Modern Optimization with R

123

Paulo Cortez
Department of Information Systems
University of Minho
Guimarães, Portugal

ISSN 2197-5736 ISSN 2197-5744 (electronic)
ISBN 978-3-319-08262-2 ISBN 978-3-319-08263-9 (eBook)
DOI 10.1007/978-3-319-08263-9
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014945630

Mathematics Subject Classification (2010): 68T20, 60-04, 62M10, 62M45, 65C05, 68T05, 97R40

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

Currently, we are in the Information Age, where more organizational and individual
activities and processes are based on Information Technology. We are also in a
fast changing world. Due to several factors, such as globalization, technological
improvements, and more recently the 2008 financial crisis, both organizations
and individuals are pressured for improving their efficiency, reducing costs, and
making better-informed decisions. This is where optimization methods, supported
by computational tools, can play a key role.

Optimization is about minimizing or maximizing a goal (or goals) and it is useful
in several domains, including Agriculture, Banking, Control, Engineering, Finance,
Marketing, Production, and Science. Examples of real-world applications include
the optimization of construction works, financial portfolios, marketing campaigns,
and water management in agriculture, just to name a few.

Modern optimization, also known as metaheuristics, is related with general
purpose solvers based on computational methods that use few domain knowledge,
iteratively improving an initial solution (or population of solutions) to optimize a
problem. Modern optimization is particularly useful for solving complex problems
for which no specialized optimization algorithm has been developed, such as
problems with discontinuities, dynamic changes, multiple objectives, or hard and
soft restrictions, which are more difficult to be handled by classical methods.

Although modern optimization often incorporates random processes within their
search engines, the overall optimization procedure tends to be much better than
pure random (Monte Carlo) search. Several of these methods are naturally inspired.
Examples of popular modern methods that are discussed in this book are simulated
annealing, tabu search, genetic algorithms, genetic programming, NSGA II (multi-
objective optimization), differential evolution, and particle swarm optimization.

R is a free, open source, and multiple platform tool (e.g., Windows, Linux,
MacOS) that was specifically developed for statistical analysis. Currently, there is
an increasing interest in using R to perform an intelligent data analysis. While it
is difficult to know the real number of R users (e.g., it may range from 250,000
to 2 million), several estimates show a clear growth in the R popularity. In effect,

v

vi Preface

the R community is very active and new packages are being continuously created,
with more than 5800 packages available, thus enhancing the tool capabilities. In
particular, several of these packages implement modern optimization methods.

There are several books that discuss either modern optimization methods or the
R tool. However, within the author’s knowledge, there is no book that integrates
both subjects and under a practical point of view, with several application R code
examples that can be easily tested by the readers. Hence, the goal of this book is
to gather in a single document (self-contained) the most relevant concepts related
with modern optimization methods, showing how such concepts and methods can
be addressed using the R tool.

This book is addressed for several target audience groups. Given that the R tool
is free, this book can be easily adopted in several bachelor or master level courses in
areas such as “Operations Research”, “Decision Support”, “Business Intelligence”,
“Soft Computing”, or “Evolutionary Computation”. Thus, this book should be
appealing for bachelor’s or master’s students in Computer Science, Information
Technology, or related areas (e.g., Engineering or Science). The book should also
be of interest for two types of practitioners: R users interested in applying modern
optimization methods and non R expert data analysts or optimization practitioners
who want to test the R capabilities for optimizing real-world tasks.

How to Read This Book

This book is organized as follows:

Chapter 1 introduces the motivation for modern optimization methods and why
the R tool should be used to explore such methods. Also, this chapter discusses
key modern optimization topics, namely the representation of a solution, the
evaluation function, constraints, and an overall view of modern optimization
methods. This chapter ends with the description of the optimization tasks that
are used for tutorial purposes in the next chapters.
Chapter 2 presents basic concepts about the R tool. This chapter is particularly
addressed for non R experts, including the necessary knowledge that is required
to understand and test the book examples. R experts should skip this chapter.
Chapter 3 is about how blind search can be implemented in R. This chapter
details in particular three approaches: pure blind, grid, and Monte Carlo search.
Chapter 4 introduces local search methods, namely hill climbing, simulated
annealing, and tabu search. Then, an example comparison between several local
search methods is shown.
Chapter 5 presents population-based search methods, namely genetic and evo-
lutionary algorithms, differential evolution, particle swarm optimization and

Preface vii

estimation of distribution algorithm. Then, two additional examples are dis-
cussed, showing a comparison between population-based methods and how to
handle constraints.
Chapter 6 is dedicated to multi-objective optimization. This chapter first
presents three demonstrative multi-objective tasks and then discusses three
multi-objective optimization approaches: weighted-formula, lexicographic, and
Pareto (e.g., NSGA-II algorithm).
Chapter 7 presents three real-world applications of previously discussed meth-
ods, namely traveling salesman problem, time series forecasting, and wine
quality classification.

Each chapter starts with an introduction, followed by several chapter topic related
sections and ends with an R command summary and exercise sections. Throughout
the book, several examples of R code are shown. The code was run using a 64 bit
R (version 3.0.2) under on a MacOS laptop. Nevertheless, these examples should
be easily reproduced by the readers on other systems, possibly resulting in slight
numerical (32 bit version) or graphical differences for deterministic examples. Also,
given that a large portion of the discussed methods are stochastic, it is natural that
different executions of the same code and under the same system will lead to small
differences in the results.

It is particularly recommended that students should execute the R code and try
to solve the proposed exercises. Examples of solutions are presented at the end of
this book. All these code files and data examples are available at: http://www3.dsi.
uminho.pt/pcortez/mor.

Production

Several contents of this book were taught by the author in the last 5 years in distinct
course units of master and doctoral programs. At the master’s level, it included
the courses “Adaptive Business Intelligence” (Masters in Information Technology,
University of Minho, Portugal) and “Business Intelligence” (Masters in Information
Systems Management, Lisbon University Institute, Portugal). The doctoral course
was “Adaptive Business Intelligence” (Doctoral Program in Computer Science,
Universities of Minho, Aveiro and Porto, Portugal). Also, some material was
lectured at a tutorial given in the European Simulation and Modelling Conference
(ESM 2011), held at Guimarães.

This book was written in LATEX, using the texstudio editor (http://texstudio.
sourceforge.net) and its US English spell checker. Most figures were made in R,
while some of the figures were designed using xfig (http://www.xfig.org), an open
source vector graphical tool.

Guimarães, Portugal Paulo Cortez

http://www3.dsi.uminho.pt/pcortez/mor
http://www3.dsi.uminho.pt/pcortez/mor
http://texstudio.sourceforge.net
http://texstudio.sourceforge.net
http://www.xfig.org

Contents

1 Introduction . 1
1.1 Motivation. 1
1.2 Why R?. 2
1.3 Representation of a Solution . 3
1.4 Evaluation Function . 3
1.5 Constraints . 4
1.6 Optimization Methods . 5
1.7 Demonstrative Problems . 7

2 R Basics . 11
2.1 Introduction . 11
2.2 Basic Objects and Functions . 13
2.3 Controlling Execution and Writing Functions . 20
2.4 Importing and Exporting Data . 24
2.5 Additional Features . 26
2.6 Command Summary . 27
2.7 Exercises . 29

3 Blind Search . 31
3.1 Introduction . 31
3.2 Full Blind Search . 32
3.3 Grid Search . 36
3.4 Monte Carlo Search . 40
3.5 Command Summary . 42
3.6 Exercises . 43

4 Local Search . 45
4.1 Introduction . 45
4.2 Hill Climbing . 45
4.3 Simulated Annealing . 50
4.4 Tabu Search . 53
4.5 Comparison of Local Search Methods. 57

ix

x Contents

4.6 Command Summary . 60
4.7 Exercises . 61

5 Population Based Search . 63
5.1 Introduction . 63
5.2 Genetic and Evolutionary Algorithms . 64
5.3 Differential Evolution . 70
5.4 Particle Swarm Optimization . 73
5.5 Estimation of Distribution Algorithm . 78
5.6 Comparison of Population Based Methods . 84
5.7 Bag Prices with Constraint . 88
5.8 Genetic Programming . 91
5.9 Command Summary . 97
5.10 Exercises . 98

6 Multi-Objective Optimization . 99
6.1 Introduction . 99
6.2 Multi-Objective Demonstrative Problems . 99
6.3 Weighted-Formula Approach . 101
6.4 Lexicographic Approach . 104
6.5 Pareto Approach . 110
6.6 Command Summary . 116
6.7 Exercises . 117

7 Applications . 119
7.1 Introduction . 119
7.2 Traveling Salesman Problem . 119
7.3 Time Series Forecasting . 133
7.4 Wine Quality Classification . 138
7.5 Command Summary . 145
7.6 Exercises . 146

References . 149

Solutions . 153

Index . 171

List of Figures

Fig. 1.1 Example of a convex (left) and non-convex (right)
function landscapes . 4

Fig. 1.2 Classification of the optimization methods presented in
this book (related R packages are in brackets) . 6

Fig. 1.3 Example of the binary (sum of bits—top left; max
sin—top right), integer (bag prices—middle) and real
value (sphere—bottom left; rastrigin—bottom right)
task landscapes . 9

Fig. 2.1 Example of the R console (top) and GUI 3.0 versions
(bottom) for Mac OS X . 12

Fig. 2.2 Examples of a plot of a factor (left) and a vector (right)
in R . 16

Fig. 3.1 Example of pure blind search (left) and grid search
(right) strategies . 32

Fig. 3.2 Example of grid search using L D 10 (left) and L D 20

(right) levels for sphere and D D 2 . 40
Fig. 3.3 Example of Monte Carlo search using N D 100 (left)

and N D 1;000 (right) samples for sphere and D D 2 42

Fig. 4.1 Example of a local search strategy . 46
Fig. 4.2 Example of hill climbing search (only best “down the

hill” points are shown) for sphere and D D 2 . 49
Fig. 4.3 Example of the temperature cooling (left) and

simulated annealing search (right) for sphere and D D 2 53
Fig. 4.4 Local search comparison example for the rastrigin task (D D 20) 60

Fig. 5.1 Example of a population based search strategy . 64
Fig. 5.2 Example of binary one-point crossover (left) and

mutation (right) operators . 66

xi

xii List of Figures

Fig. 5.3 Example of evolution of a genetic algorithm for task
bag prices . 69

Fig. 5.4 Example of an evolutionary algorithm search for sphere (D D 2) 70
Fig. 5.5 Population evolution in terms of x1 (top) and x2

(bottom) values under the differential evolution
algorithm for sphere (D D 2) . 74

Fig. 5.6 Particle swarm optimization for sphere and D D 2

(left denotes the evolution of the position particles for
the first parameter; right shows the evolution of the best fitness) . . 79

Fig. 5.7 Evolution of the first parameter population values (x1)
for EDA (NP D 100) . 83

Fig. 5.8 Population based search comparison example for the
rastrigin (top) and bag prices (bottom) tasks. 87

Fig. 5.9 Comparison of repair and death penalty strategies for
bag prices task with constraint . 92

Fig. 5.10 Example of a genetic programming random subtree crossover. 93
Fig. 5.11 Comparison of rastrigin function and best solution

given by the genetic programming . 97

Fig. 6.1 Example of the FES1 f1 (left) and f2 (right) task
landscapes (D D 2). 100

Fig. 6.2 Examples of convex (left) and non-convex (right)
Pareto fronts, where the goal is to minimize both
objectives 1 and 2 . 102

Fig. 6.3 NSGA-II results for bag prices (top graphs) and FES1
(bottom graphs) tasks (left graphs show the Pareto
front evolution, while right graphs compare the best
Pareto front with the weighted-formula results) . 116

Fig. 7.1 Example of three order mutation operators . 120
Fig. 7.2 Example of PMX and OX crossover operators . 121
Fig. 7.3 Comparison of simulated annealing (SANN) and

evolutionary algorithm (EA) approaches for the Qatar TSP 130
Fig. 7.4 Optimized tour obtained using evolutionary algorithm

(left), Lamarckian evolution (middle), and 2-opt (right)
approaches for the Qatar TSP . 131

Fig. 7.5 Area of Qatar tour given by 2-opt (left) and optimized
by the evolutionary approach (right). 133

Fig. 7.6 Sunspot one-step ahead forecasts using ARIMA and
genetic programming (gp) methods . 138

Fig. 7.7 The optimized Pareto front (left) and ROC curve for the
SVM with four inputs (right) for the white wine quality task 145

List of Algorithms

1 Generic modern optimization method . 7
2 Pure hill climbing optimization method . 46
3 Simulated annealing search as implemented by the

optim function . 51
4 Tabu search . 54
5 Genetic/evolutionary algorithm as implemented by the

genalg package . 65
6 Differential evolution algorithm as implemented by the

DEoptim package. 71
7 Particle swarm optimization pseudo-code for SPSO 2007

and 2011 . 75
8 Generic EDA pseudo-code implemented

in copulaedas package, adapted from
Gonzalez-Fernandez and Soto (2012). 80

xiii

Chapter 1
Introduction

1.1 Motivation

A vast number of real-world (often complex) tasks can be viewed as an optimization
problem, where the goal is to minimize or maximize a given goal. In effect,
optimization is quite useful in distinct application domains, such as Agricul-
ture, Banking, Control, Engineering, Finance, Marketing, Production and Science.
Moreover, due to advances in Information Technology, nowadays it is easy to store
and process data. Since the 1970s, and following the Moore’s law, the number of
transistors in computer processors has doubled every 2 years, resulting in more
computational power at a reasonable price. And it is estimated that the amount
of data storage doubles at a higher rate. Furthermore, organizations and individual
users are currently pressured to increase efficiency and reduce costs. Rather than
taking decisions based on human experience and intuition, there is an increasing
trend for adopting computational tools, based on optimization methods, to analyze
real-world data in order to make better informed decisions.

Optimization is a core topic of the Operations Research field, which developed
several classical techniques, such as linear programming (proposed in the 1940s)
and branch and bound (developed in the 1960s) (Schrijver 1998). More recently,
in the last decades, there has been an emergence of new optimization algorithms,
often termed “modern optimization” (Michalewicz et al. 2006), “modern heuristics”
(Michalewicz and Fogel 2004), or “metaheuristics” (Luke 2012). In this book, we
adopt the first term, modern optimization, to describe these algorithms.

In contrast with classical methods, modern optimization methods are general
purpose solvers, i.e., applicable to a wide range of distinct problems, since few
domain knowledge is required. For instance, the optimization problem does not
need to be differentiable, which is required by classical methods such as gradient
descent. There are only two main issues that need to be specified by the user
when adopting modern heuristic methods (Michalewicz et al. 2006): the representa-
tion of the solution, which defines the search space and its size; and the evaluation
function, which defines how good a particular solution is, allowing to compare

© Springer International Publishing Switzerland 2014
P. Cortez, Modern Optimization with R, Use R!, DOI 10.1007/978-3-319-08263-9__1

1

2 1 Introduction

different solutions. In particular, modern methods are useful for solving complex
problems for which no specialized optimization algorithm has been developed (Luke
2012). For instance, problems with discontinuities, dynamic changes, multiple
objectives or hard and soft restrictions, which are more difficult to be handled by
classical methods (Michalewicz et al. 2006). Also in contrast with classical methods,
modern optimization does not warranty that the optimal solution is always found.
However, often modern methods achieve high quality solutions with a much more
reasonable use of computational resources (e.g., memory and processing effort)
(Michalewicz and Fogel 2004).

There is a vast number of successful real-world applications based on modern
optimization methods. Examples studied by the author of this book include (among
others): sitting guests at a wedding party (Rocha et al. 2001); time series forecasting
(Cortez et al. 2004); optimization of data mining classification and regression
models (Rocha et al. 2007); and improvement of quality of service levels in
computer networks (Rocha et al. 2011).

1.2 Why R?

The R tool (R Core Team 2013) is an open source, high-level matrix programming
language for statistical and data analysis. The tool runs on multiple platforms,
including Windows, MacOS, Linux, FreeBSD, and other UNIX systems. R is an
interpreted language, meaning that the user gets an immediate response of the tool,
without the need of program compilation. The most common usage of R is under a
console command interface, which often requires a higher learning curve from the
user when compared with other more graphical user interface tools. However, after
mastering the R environment, the user achieves a better understanding of what is
being executed and higher control when compared with graphical interface based
products.

The R base distribution includes a large variety of statistical techniques (e.g.,
distribution functions, statistical tests), which can be useful for inclusion in modern
optimization methods and to analyze their results. Moreover, the tool is highly
extensible by creating packages. The R community is very active and new packages
are being continuously created, with more than 5,800 packages available at the Com-
prehensive R Archive Network (CRAN): http://www.r-project.org/. By installing
these packages, users get access to new features, such as: data mining/machine
learning algorithms; simulation and visualization techniques; and also modern
optimization methods. New algorithms tend to be quickly implemented in R, thus
this tool can be viewed as worldwide gateway for sharing computational algorithms
(Cortez 2010). While it is difficult to know the real number of R users (e.g., it may
range from 250,000 to 2 million), several estimates show a clear growth in the R
popularity (Vance 2009; Muenchen 2013). A useful advantage of using R is that it
is possible to execute quite distinct computational tasks under the same tool, such as

http://www.r-project.org/

1.4 Evaluation Function 3

combining optimization with statistical analysis, visualization, simulation, and data
mining (see Sect. 7.4 for an example that optimizes data mining models).

To facilitate the usage of packages, given that a large number is available,
several R packages are organized into CRAN task views. The Optimization
and Mathematical Programming view is located at http://cran.r-project.org/web/
views/Optimization.html and includes more than 60 packages. In this book, we
explore several of these CRAN view packages (and others) related with modern
optimization methods.

1.3 Representation of a Solution

A major decision when using modern optimization methods is related with how
to represent a possible solution (Michalewicz et al. 2006). Such decision sets the
search space and its size, thus producing an impact on how new solutions are
searched. To represent a solution, there are several possibilities. Binary, integer,
character, real value and ordered vectors, matrices, trees and virtually any computer
based representation form (e.g., computer program) can be used to encode solutions.
A given representation might include a mix of different encodings (e.g., binary and
real values). Also, a representation might be of fixed (e.g., fixed binary vectors) or
of variable length (e.g., trees).

Historically, some of these representation types are attached with specific
optimization methods. For instance, binary encodings are the basis of Genetic
Algorithms (Holland 1975). Tabu search was designed to work on discrete
spaces (Glover and Laguna 1998). Real-value encodings are adopted by several
evolutionary algorithms (e.g., evolution strategy) (Bäck and Schwefel 1993),
differential evolution, and particle swarms. Tree structures are optimized using
genetic programming (Banzhaf et al. 1998). It should be noted that often these
optimization methods can be adapted to other representations. For instance, a novel
particle swarm was proposed for discrete optimization in Chen et al. (2010).

In what concerns this book, the representations adopted are restricted by the
implementations available in the explored R tool packages, which mainly adopt
binary or real values. Thus, there will be more focus on these type of representations.
Nevertheless, Sect. 7.2 shows a ordered vector representation optimization example.
More details about other representations, including their algorithmic adjustments,
can be found in Luke (2012).

1.4 Evaluation Function

Another important decision for handling optimization tasks is the definition of
the evaluation function, which should translate the desired goal (or goals) to be
maximized or minimized. Such function allows to compare different solutions,
by providing either a rank (ordinal evaluation function) or a quality measure score

http://cran.r-project.org/web/views/Optimization.html
http://cran.r-project.org/web/views/Optimization.html

4 1 Introduction

search space

ev
al

ua
tio

n
fu

nc
tio

n

l
global minimum

search space

ev
al

ua
tio

n
fu

nc
tio

n

l
global minimum

l
local minimum

l
local minimum

Fig. 1.1 Example of a convex (left) and non-convex (right) function landscapes

(numeric function) (Michalewicz et al. 2006). When considering numeric functions,
the shape can be convex or non-convex, with several local minima/maxima
(Fig. 1.1). Convex tasks are much easier to solve and there are specialized algorithms
(e.g., least squares, linear programming) that are quite effective for handling such
problems (Boyd and Vandenberghe 2004). However, many practical problems
are non-convex, often including noisy or complex function landscapes, with
discontinuities. Optimization problems can even be dynamic, changing through
time. For all these complex problems, an interesting alternative is to use modern
optimization algorithms that only search a subset of the search space but tend to
achieve near optimum solutions in a reasonable time.

By default, some implementations of optimization methods only perform a
minimization of a numerical evaluation function. In such cases, a simple approach is
to transform the maximization function max .f .s// into the equivalent minimization
task �min .f 0.s//, by adopting f 0.s/ D �f .s/, where s denotes the solution.

In several application fields (e.g., Control, Engineering, Finance) there are two
or more goals that need to be optimized. Often, these goals conflict and trade-
offs need to be set, since optimizing solutions under a single objective can lead to
unacceptable outcomes in terms of the remaining goals. In such cases, a much better
approach is to adopt a multi-objective optimization. In this book, we devote more
attention to single response evaluation functions, since multi-objective optimization
is discussed in a separated chapter (Chap. 6).

1.5 Constraints

There are two main types of constraints (Michalewicz 2008): hard and soft. Hard
constraints cannot be violated and are due to factors such as laws or physical
restrictions. Soft constraints are related with other (often non-priority) user goals,
such as increasing production efficiency while reducing environmental costs.

Soft restrictions can be handled by adopting a multi-objective approach
(Chap. 6), while hard constraints may originate infeasible solutions that need to

1.6 Optimization Methods 5

be treated by the optimization procedure. To deal with infeasible solutions, several
methods can be adopted (Michalewicz et al. 2006): death-penalty, penalty-weights,
repair and only generate feasible solutions.

Death-penalty is a simple method, which involves assigning a very large penalty
value, such that infeasible solutions are quickly discarded by the search (see
Sect. 4.4 for an example). However, this method is not very efficient and often
puts the search engine effort in discarding solutions and not finding the optimum
value. Penalty-weights is a better solution, also easy to implement. For example,
quite often, the shape of an evaluation function can be set within the form f .s/ D
Objective.s/ � Penalty.s/ (Rocha et al. 2001). For instance, for a given business,
a possible evaluation function could be f D w1 � Profit.s/ � w2 � Cost.s/.
The main problem with penalty-weights is that often it is difficult to find the ideal
weights, in particular when several constraints are involved. The repair approach
transforms an infeasible solution into a feasible one. Often, this is achieved by using
domain dependent information (such as shown in Sect. 5.2) or by applying a local
search (e.g., looking for a feasible solution in the solution space neighborhood,
see Sect. 5.7). Finally, the approaches that only generate feasible solutions are
based in decoders and special operators. Decoders work only in a feasible search
space, by adopting an indirectly representation, while special operators use domain
knowledge to create new solutions from previous ones.

1.6 Optimization Methods

There are different dimensions that can be used to classify optimization methods.
Three factors of analysis are adopted in this book: the type of guided search; the
search is deterministic or stochastic based; and if the method is inspired by physical
or biological processes.

The type of search can be blind or guided. The former assumes the exhaustion
of all alternatives for finding the optimum solution, while the latter uses previous
searches to guide current search. Modern methods use a guided search, which often
is subdivided into two main categories: local, which searches within the neighbor-
hood of an initial solution, and global search, which uses a population of solutions.
In most practical problems, with high-dimensional search spaces, pure blind search
is not feasible, requiring too much computational effort. Local (or single-state)
search presents in general a much faster convergence, when compared with global
search methods. However, if the evaluation landscape is too noisy or complex, with
several local minima (e.g., right of Fig. 1.1), local methods can easily get stuck.
In such cases, multiple runs, with different initial solutions, can be executed to
improve convergence. Although population based algorithms tend to require more
computation than local methods, they perform a simultaneous search in distinct
regions of the search space, thus working better as global optimization methods.

The distinct search types can even be combined. For instance, a two-phase search
can be set, where a global method is employed at a first step, to quickly identify

6 1 Introduction

interesting search space regions, and then, as the second step, the best solutions are
improved by employing a local search method. Another alternative is to perform
a tight integration of both approaches, such as under a Lamarckian evolution or
Baldwin effect (Rocha et al. 2000). In both cases, within each cycle of the population
based method, each new solution is used as the initial point of a local search and the
evaluation function is computed over the improved solution. Lamarckian evolution
replaces the population original solution by its improved value (Sect. 7.2 presents
a Lamarckian evolution example), while the Baldwinian strategy keeps the original
point (as set by the population based method).

Several modern methods employ some degree of randomness, thus belonging
to the family of stochastic optimization methods, such as simulated annealing
and genetic algorithms (Luke 2012). Also, several of these methods are naturally
inspired (e.g., genetic algorithms, particle swarm optimization) (Holland 1975;
Eberhart et al. 2001). Figure 1.2 shows the full taxonomy of the optimization
methods presented in this book (with respective R packages).

The distinct modern optimization methods share some common features.
Algorithm 1 shows (in pseudo-code) a generic modern optimization method that
is applicable to all methods discussed in this book. This global algorithm receives
two inputs, the evaluation function (f) and a set of control parameters (C), which
includes not only the method’s internal parameters (e.g., initial temperature,
population size) but it is also related with the representation of the solution
(e.g., lower and upper bounds, representation type, and length). In all modern
optimization methods, there is an initial setup followed by a main loop cycle that
ends once a given termination criterian is met. Distinct criteria can be adopted (or
even combined):

algorithm (copulaedas)

Blind Search

Population

Based Search

simulated annealing (optim)

Inspired

Naturally

genetic/evolutionary
algorithm (genalg, mco)

Deterministic Stochastic

monte carlo searchpure blind search

grid search

Modern Optimization
Single−State

Search
hill climbing
tabu search (tabuSearch)

genetic programming (rgp)

particle swarm optimization (pso)

differential evolution (DEoptim)

estimation of distribution

Fig. 1.2 Classification of the optimization methods presented in this book (related R packages are
in brackets)

1.7 Demonstrative Problems 7

Algorithm 1 Generic modern optimization method
1: Inputs: f; C F f is the evaluation function, C includes control parameters
2: S ini t ialization.C / F S is a solution or population
3: i 0 F i is the number of iterations of the method
4: while not termination_cri teria.S; f; C; i/ do
5: S 0 change.S; f; C; i/ F new solution or population
6: B best.S; S 0; f; C; i/ F store the best solution
7: S select.S; S 0; f; C; i/ F solution or population for next iteration
8: i i C 1

9: end while
10: Output: B F the best solution

• maximum computational measures—such as number of iterations, evaluation
function calculations, time elapsed;

• target measures—such as to stop if best value is higher or equal to a given
threshold;

• convergence measures—such as number of iterations without any improvement
in the solution or average enhancement achieved in the last iterations; and

• distribution measures—such as measuring how spread are the last tested
solutions in the search space and stop if the dispersion is smaller than a threshold.

What distinguishes the methods is related with two main aspects. First, if in each
iteration there is a single-state (local based) or a population of solutions. Second,
the way new solutions are created (function change) and used to guide in the search
(function select). In the generic pseudo-code, the number of iterations (i) is also
included as an input of the change, best, and select functions because it is assumed
that the behavior of these functions can be dynamic, changing as the search method
evolves.

1.7 Demonstrative Problems

This section includes examples of simple optimization tasks that were selected
mainly from a tutorial perspective, where the aim is to easily show the capabilities
of the optimization methods. The selected demonstrative problems include 2 binary,
1 integer and 2 real value tasks. More optimization tasks are presented and explored
in Chaps. 6 (multi-optimization tasks) and 7 (real-world tasks).

The binary problems are termed here sum of bits and max sin. The former, also
known as max ones, is a simple binary maximization “toy” problem, defined as
(Luke 2012):

fsum of bits.x/ D
DX

iD1

xi (1.1)

8 1 Introduction

where x D .x1; : : : ; xD/ is a boolean vector (xi 2 f0; 1g) with a dimension
(or length) of D. The latter problem is another simple binary task, where the goal is
to maximize (Eberhart and Shi 2011):

x0 DPD
iD1 xi 2

i�1

fmax sin.x/ D sin .� x0

2D /
(1.2)

where x0 is the integer representation of x.
A visualization for both binary problems is given in top of Fig. 1.3, assuming

a dimension of D D 8. In the top left graph, x-axis denotes x0, the integer
representation of x for sum of bits. In the example, the optimum solution for the
sum of bits is x D .1; 1; 1; 1; 1; 1; 1; 1/ (f .x/ D 8), while the best solution for max
sin is x D .1; 0; 0; 0; 0; 0; 0; 0/, x0 D 128 (f .x/ D 1).

The bag prices is an integer optimization task (proposed in this book), that
mimics the decision of setting of prices for items produced in a bag factory.
The factory produces up to five (D D 5) different bags, with a unit cost of
u D .$30; $25; $20; $15; $10/, where ui is the cost for manufacturing product i .
The production cost is cost.xi / D 100 C ui � sales.xi / for the i -th bag
type. The number of expected sales, which is what the factory will produce, is
dependent on the product selling price (x) and marketing effort (m), according to
the formula sales.xi / D round..1000= ln .xi C 200/ � 141/ �mi /, where round

is the ordinary rounding function and m D .2:0; 1:75; 1:5; 1:25; 1:0/. The manager
at the factory needs to decide the selling prices for each bag (xi , in $), within the
range $1 to $1,000, in order to maximize the expected profit related with the next
production cycle:

fbag prices D
DX

iD1

xi � sales.xi / � cost.xi / (1.3)

The middle left graph of Fig. 1.3 plots the full search space for the first item of
bag prices (D D 1), while the middle right plot shows a zoom near the optimum
solution. As shown by the graphs, the profit function follows in general a global
convex shape. However, close to the optimum (x1 D 414, f .x1/ D 11420) point
there are several local minima, under a “saw” shape that is more difficult to optimize.
As shown in Chap. 3, the optimum solution for five different bags (D D 5) is
x D c.414; 404; 408; 413; 395/, which corresponds to an estimated profit of
$43,899.

Turning to the real value tasks, two popular benchmarks are adopted, namely
sphere and rastrigin (Tang et al. 2009), which are defined by:

fsphere.x/ DPD
iD1 x2

i

frastrigin.x/ DPD
iD1 .x2

i � 10 cos 2�xi C 10/
(1.4)

where x D .x1; : : : ; xD/ is a real value vector (xi 2 <). For both tasks, the
goal is to find the minimum value, which is the origin point (e.g., if D D 4 and
x D .0; 0; 0; 0/, then f .x/ D 0). The sphere task is more simpler, mainly used for
demonstration purposes, while the rastrigin is much more difficult multi-modal

1.7 Demonstrative Problems 9

0 50 100 150 200 250

0
2

4
6

8

search space (x)

ev
al

ua
tio

n
fu

nc
tio

n
l

l optimum

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

search space

ev
al

ua
tio

n
fu

nc
tio

n

l
l optimum

0 200 400 600 800 1000

−
20

00
20

00
60

00
10

00
0

search space

ev
al

ua
tio

n
fu

nc
tio

n

l
l optimum

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

390 400 410 420 430

11
00

0
11

20
0

11
40

0

search space

ev
al

ua
tio

n
fu

nc
tio

n
l

l optimum

x1

x2

x1

x2

Fig. 1.3 Example of the binary (sum of bits—top left; max sin—top right), integer (bag prices—
middle) and real value (sphere—bottom left; rastrigin—bottom right) task landscapes

problem, given that the number of local minima grows exponentially with the
increase of dimensionality (D). The differences between sphere and rastrigin are
clearly shown in the two graphs at the bottom of Fig. 1.3.

Chapter 2
R Basics

2.1 Introduction

As explained in the preface of this book, the goal of this chapter is to briefly present
the most relevant R tool aspects that need to be learned by non-experts in order to
understand the examples discussed in this book. For a more detailed introduction to
the tool, please consult (Paradis 2002; Zuur et al. 2009; Venables et al. 2013).

R is language and a computational environment for statistical analysis that was
created by Ihaka and Gentleman in 1991 and that was influenced by the S and
Scheme languages (Ihaka and Gentleman 1996). R uses a high-level language, based
in objects, that is flexible and extensible (e.g., by the development of packages)
and allows a natural integration of statistics, graphics, and programming. The R
system offers an integrated suite with a large and coherent collection of tools for
data manipulation, analysis, and graphical display.

The tool is freely distributed under a GNU general public license and can be
easily installed from the official web page (http://www.r-project.org), with several
binary versions available for most commonly adopted operating systems (e.g.,
Windows, MacOS). R can be run under the console (e.g., common in Linux systems)
or using Graphical User Interface (GUI) applications (e.g., R for Mac OS X GUI).
There are also several independent Integrated Development Environments (IDE)
for R, such as RStudio (http://www.rstudio.com/) and Tinn-R (http://nbcgib.uesc.
br/lec/software/editores/tinn-r/en). Figure 2.1 shows an example of the R console
and GUI applications for the Mac OS system.

R works mostly under a console interface (Fig. 2.1), where commands are typed
after the prompt (>). An extensive help system is included. There are two console
alternatives to get help on a particular function. For instance, help(barplot)
or ?barplot returns the help for the barplot function. It is also possible
to search for a text expression, such as help.search("linear models")
or ??"linear models". For each function, the help system includes often a
short description, the function main arguments, details, return value, references,
and examples. The last item is quite useful for an immediate user perception of

© Springer International Publishing Switzerland 2014
P. Cortez, Modern Optimization with R, Use R!, DOI 10.1007/978-3-319-08263-9__2

11

http://www.r-project.org
http://www.rstudio.com/
http://nbcgib.uesc.br/lec/software/editores/tinn-r/en
http://nbcgib.uesc.br/lec/software/editores/tinn-r/en

12 2 R Basics

Fig. 2.1 Example of the R console (top) and GUI 3.0 versions (bottom) for Mac OS X

the function capabilities and can be accessed directly in the console, such as by
using > example(barplot) . Some demonstrations of interesting R scripts are

available with the command demo, such as > demo(graphics) or > demo().

The tool capabilities can be extended by installing packages. The full list of
packages is available at CRAN (http://cran.r-project.org). Packages can be installed
on the console, using the command install.packages, or GUI system, using
the application menus. After installing a package, the respective functions and
help is only available if the package is loaded using the library command. For
example, the following sequence shows the commands needed to install the particle
swarm package and get the help on its main function:

http://cran.r-project.org

2.2 Basic Objects and Functions 13

> install.packages("pso")
> library(pso)
> ?pso

A good way to get help on a particular package is to use > help(package=
package).

R instructions can be separated using the ; or newline character. Everything that
appears after the # character in a line is considered a comment. R commands can
be introduced directly in the console or edited in a script source file (e.g., using
RStudio). The common adopted extension for R files is .R and these can be loaded
with the source command. For example, source("code.R") executes the file
code.R.

By default, the R system searches for files (e.g., code, data) in the current
working directory, unless an explicit path is defined. The definition of such
path is operating system dependent. Examples of paths are: "�/directory/"
(Unix or Mac OS, where � means the user’s home directory); "C:/Documents
and Settings/User/directory/" (Windows); and "../directory"
(relative path should work in all systems). The working directory can be accessed
and changed using the R GUI (e.g., "�/R/rminer/" at the bottom of
Fig. 2.1) or the console, under the getwd() and setwd() functions, such as
> setwd("../directory") .

There is a vast amount of R features (e.g., functions, operators), either in
the base version or its contributing packages. In effect, the number of features
offered in R is such large that often users face the dilemma between spending time
coding a procedure or searching if such procedure has already been implemented.
In what concerns this book, the next sections describe some relevant R features
that are required to understand the remaining chapters of this book. Explanation
is given mostly based on examples, given that the full description of each R
operator or function can be obtained using the help system, such as help(":") or
help("sort").

2.2 Basic Objects and Functions

R uses objects to store items, such as data and functions. The = (or <-1) operator
can be used to assign an object to a variable. The class of an object is automatically
assumed, with atomic objects including the logical (i.e., FALSE, TRUE),
character (e.g., "day"), integer (e.g., 1L), and numeric (e.g., 0.2,
1.2e-3) types. The type of any R object can be accessed by using the function
class. There are also several constants defined, such as: pi—� ; Inf—infinity;
NaN—not a number; NA—missing value; and NULL—empty or null object.

1Although the <- operator is commonly used in R, this book adopts the smaller = character.

14 2 R Basics

The R system includes an extensive list of functions and operators that can be
applied over a wide range of object types, such as:

• class()—get type of object;
• summary()—show a summary of the object;
• print()—shows the object;
• plot()—plots the object; and
• is.na(), is.nan(), is.null()—check if object is NA, NaN, or NULL.

Another useful function is ls(), which lists all objects defined by the user.
An example of a simple R session is shown here:

> s="hello world"
> print(class(s)) # character
[1] "character"
> print(s) # "hello world"
[1] "hello world"
> x=1.1
> print(class(x)) # numeric
[1] "numeric"
> print(summary(x)) # summary of x

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.1 1.1 1.1 1.1 1.1 1.1

> plot(x)
> print(x) # 1.1
[1] 1.1
> print(pi) # 3.141593
[1] 3.141593
> print(sqrt(-1)) # NaN
[1] NaN
Warning message:
In sqrt(-1) : NaNs produced
> print(1/0) # Inf
[1] Inf

There are also several containers, such as: vector, factor, ordered,
matrix, array, data.frame, and list. Vectors, matrices, and arrays use an

indexed notation ([]) to store and access several atoms. A factor is a special vector
that contains only discrete values from a domain set, while ordered is a special
factor whose domain levels have an order. A data frame is a special matrix where
the columns (made of vectors or factors) have names. Finally, a list is a collection
of distinct objects (called components). A list can include indexed elements (of any
type, including containers) under the [[]] notation.

There is a large number of functions and operators that can be used to manipulate
R objects (including containers). Some useful functions are:

• c()—concatenate several elements;
• seq()—create a regular sequence;
• sample(), runif(), rnorm()—create random samples;
• set.seed()—set the random generation seed number;
• str()—show the internal structure of the object;

2.2 Basic Objects and Functions 15

• length(), sum(), mean(), median(), min(), max()—computes the
length, sum, average, median, minimum or maximum of all elements of the
object;

• names()—get and set the names of an object;
• sort()—sorts a vector or factor;
• which()—returns the indexes of an object that follow a logical condition;
• which.min(), which.max()—returns the index of the minimum or

maximum value;
• sqrt()—square root of a number; and
• sin(), cos(), tan()—trigonometric functions.

Examples of operators are:

• $—get and set a list component;
• :—generate regular sequences;
• +, -, *, /—simple arithmetic operators;
• ^ (or **)—power operator; and
• %%—rest of an integer division.

R also offers vast graphical based features. Examples of useful related functions
are:

• plot—generic plotting function;
• barplot—bar plots;
• pie—pie charts;
• hist—histograms;
• boxplot—box-and-whisker plot; and
• wireframe—3D scatter plot (package lattice).

A graph can be sent to screen (default) or redirected to a device (e.g., PDF file). The
description of all these graphical features is out of scope of this book, but a very
interesting sample of R based graphs and code can be found at the R Graph Gallery
https://www.facebook.com/pages/R-Graph-Gallery/169231589826661.

An example of an R session that uses factors and vectors is presented next
(Fig. 2.2 shows the graphs created by such code):

> f=factor(c("a","a","b","b","c")); print(f) # create factor
[1] a a b b c
Levels: a b c
> f[1]="c"; print(f) # change factor
[1] c a b b c
Levels: a b c
> print(levels(f)) # show domain levels: "a" "b" "c"
[1] "a" "b" "c"
> print(summary(f)) # show a summary of y
a b c
1 2 2
> plot(f) # show y barplot
> x=c(1.1,2.3,-1,4,2e-2) # creates vector x
> summary(x) # show summary of x

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.000 0.020 1.100 1.284 2.300 4.000

https://www.facebook.com/pages/R-Graph-Gallery/169231589826661

16 2 R Basics

a b c0.
0

0.
5

1.
0

1.
5

2.
0

l

l

l

l

l

1 2 3 4 5

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Index
y

Fig. 2.2 Examples of a plot of a factor (left) and a vector (right) in R

> print(x) # show x
[1] 1.10 2.30 -1.00 4.00 0.02
> str(x) # show x structure
num [1:5] 1.1 2.3 -1 4 0.02

> length(x) # show the length of x
[1] 5
> x[2] # show second element of x
[1] 2.3
> x[2:3]=(2:3)*1.1 # change 2nd and 3rd elements
> x[length(x)]=5 # change last element to 5
> print(x) # show x
[1] 1.1 2.2 3.3 4.0 5.0
> print(x>3) # show which x elements > 3
[1] FALSE FALSE TRUE TRUE TRUE
> print(which(x>3)) # show indexes of x>3 condition
[1] 3 4 5
> names(x)=c("1st","2nd","3rd","4th","5th") # change names of x
> print(x) # show x
1st 2nd 3rd 4th 5th
1.1 2.2 3.3 4.0 5.0
> print(mean(x)) # show the average of x
[1] 3.12
> print(summary(x)) # show a summary of x

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.10 2.20 3.30 3.12 4.00 5.00

> y=vector(length=5); print(y) # FALSE, FALSE, ..., FALSE
[1] FALSE FALSE FALSE FALSE FALSE
> y[]=1; print(y) # all elements set to 1
[1] 1 1 1 1 1
> y[c(1,3,5)]=2; print(y) # 2,1,2,1,2
[1] 2 1 2 1 2
> # fancier plot of y:
> plot(y,type="b",lwd=3,col="gray",pch=19,panel.first=grid(5,5))

2.2 Basic Objects and Functions 17

Typically, R functions can receive several arguments, allowing to detail the effect
of the function (e.g. help(plot)). To facilitate the use of functions, most of
the parameters have default values (which are available in the help system). For
instance, replacing the last line of above code with plot(y) will also work,
although with a simpler effect.

Another R example for manipulating vectors is shown here:

> x=sample(1:10,5,replace=TRUE) # 5 random samples from 1 to 10
with replacement

> print(x) # show x
[1] 10 5 5 1 2
> print(min(x)) # show min of x
[1] 1
> print(which.min(x)) # show index of x that contains min
[1] 4
> print(sort(x,decreasing=TRUE)) # show x in decreasing order
[1] 10 5 5 2 1
> y=seq(0,20,by=2); print(y) # y = 0, 2, ..., 20
[1] 0 2 4 6 8 10 12 14 16 18 20

> print(y[x]) # show y[x]
[1] 18 8 8 0 2
> print(y[-x]) # - means indexes excluded from y
[1] 4 6 10 12 14 16 20
> x=runif(5,0.0,10.0);print(x) # 5 uniform samples from 0 to 10
[1] 1.011359 1.454996 6.430331 9.395036 6.192061
> y=rnorm(5,10.0,1.0);print(y) # normal samples (mean 10, std 1)
[1] 10.601637 9.231792 9.548483 9.883687 9.591727
> t.test(x,y) # t-student paired test

Welch Two Sample t-test

data: x and y
t = -3.015, df = 4.168, p-value = 0.03733
alternative hypothesis: true difference in means is not equal to

0
95 percent confidence interval:
-9.2932638 -0.4561531

sample estimates:
mean of x mean of y
4.896757 9.771465

The last R function (t.test()) checks if the differences between the x and y
averages are statistically significant. Other statistical tests are easily available in R,
such as wilcox.test (Wilcoxon) or chisq.test (Pearson’s chi-squared).
In the above example, x is created using a uniform distribution U .0; 10/, while y is
created using a normal one, i.e., N .10; 1/. Given that R is a strong statistical tool,
there is an extensive list of distribution functions (e.g., binomial, Poisson), which
can be accessed using help("Distributions").

18 2 R Basics

The next R session is about matrix and data.frame objects:

> m=matrix(ncol=3,nrow=2); m[,]=0; print(m) # 3x2 matrix
[,1] [,2] [,3]

[1,] 0 0 0
[2,] 0 0 0
> m[1,]=1:3; print(m) # change 1st row

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 0 0 0
> m[,3]=1:2; print(m) # change 3rd column

[,1] [,2] [,3]
[1,] 1 2 1
[2,] 0 0 2
> m[2,1]=3; print(m) # change m[2,1]

[,1] [,2] [,3]
[1,] 1 2 1
[2,] 3 0 2
> print(nrow(m)) # number of rows
[1] 2
> print(ncol(m)) # number of columns
[1] 3
> m[nrow(m),ncol(m)]=5; print(m) # change last

element
[,1] [,2] [,3]

[1,] 1 2 1
[2,] 3 0 5
> m[nrow(m)-1,ncol(m)-1]=4; print(m) # change m[1,2]

[,1] [,2] [,3]
[1,] 1 4 1
[2,] 3 0 5
> print(max(m)) # show maximum of m
[1] 5
> m=sqrt(m); print(m) # change m

[,1] [,2] [,3]
[1,] 1.000000 2 1.000000
[2,] 1.732051 0 2.236068
> m[1,]=c(1,1,2013); m[2,]=c(2,2,2013) # change m
> d=data.frame(m) # create data.frame
> names(d)=c("day","month","year") # change names
> d[1,]=c(2,1,2013); print(d) # change 1st row
day month year

1 2 1 2013
2 2 2 2013
> d$day[2]=3; print(d) # change d[1,2]
day month year

1 2 1 2013
2 3 2 2013
> d=rbind(d,c(4,3,2014)); print(d) # add row to d
day month year

1 2 1 2013
2 3 2 2013
3 4 3 2014
> # change 2nd column of d to factor, same as d[,2]=factor(...

2.2 Basic Objects and Functions 19

> d$month=factor(c("Jan","Feb","Mar"))
> print(summary(d)) # summary of d

day month year
Min. :2.0 Feb:1 Min. :2013
1st Qu.:2.5 Jan:1 1st Qu.:2013
Median :3.0 Mar:1 Median :2013
Mean :3.0 Mean :2013
3rd Qu.:3.5 3rd Qu.:2014
Max. :4.0 Max. :2014

The last section example is related with lists:

> l=list(a="hello",b=1:3) # list with 2 components
> print(summary(l)) # summary of l
Length Class Mode

a 1 -none- character
b 3 -none- numeric
> print(l) # show l
$a
[1] "hello"

$b
[1] 1 2 3

> l$b=l$b^2+1;print(l) # change b to (b*b)+1
$a
[1] "hello"

$b
[1] 2 5 10

> v=vector("list",3) # vector list
> v[[1]]=1:3 # change 1st element of v
> v[[2]]=2 # change 2nd element of v
> v[[3]]=l # change 3rd element of v
> print(v) # show v
[[1]]
[1] 1 2 3

[[2]]
[1] 2

[[3]]
[[3]]$a
[1] "hello"

[[3]]$b
[1] 2 3 4

> print(length(v)) # length of v
[1] 3

20 2 R Basics

2.3 Controlling Execution and Writing Functions

The R language contains a set of control-flow constructs that are quite similar to
other imperative languages (e.g., C, Java). Such constructs can be accessed using
the console command line help("Control") and include:

• if(condition) expression—if condition is true then execute expression;
• if(condition) expression1 else expression2—another conditional execution

variant, where expression1 is executed if condition is TRUE, else expression2
is executed;

• switch(: : :)—conditional control function that evaluates the first argument
and based on such argument chooses one of the remaining arguments.

• for(variable in sequence) expression—cycle where variable assumes in each
iteration a different value from sequence.

• while(condition) expression—loop that is executed while condition is true;
• repeat expression—execute expression (stops only if there is a break);
• break—breaks out a loop; and
• next—-skips to next iteration.

A condition in R is of the logical type, assumed as the first TRUE or FALSE
value. Similarly to other imperative languages, several logical operators can be used
within a condition (use help("Logic") for more details):

• x==y, x!=y, x>y, x>=y x<y and x>=y—equal, different, higher, higher or equal,
lower, lower or equal to;

• !x—negation of x;
• x&y and x|y—x and y elementwise logical AND and OR (may generate several
TRUE or FALSE values);

• x&&y and x||y—left to right examination of logical AND and OR (generates
only one TRUE or FALSE value);

• xor(x, y)—elementwise exclusive OR.

Regarding the expression, it can include a single command, expression1, or a
compound expression, under the form { expression1; expression2 }. An R session
is presented to exemplify how control execution is performed:

two if else examples:
> x=0; if(x>0) cat("positive\n") else if(x==0) cat("neutral\n")

else cat("negative\n")
neutral
> if(xor(x,1)) cat("XOR TRUE\n") else cat("XOR FALSE\n")
XOR TRUE
> print(switch(3,"a","b","c")) # numeric switch example
[1] "c"
> x=1; while(x<3) { print(x); x=x+1;} # while example
[1] 1
[1] 2
> for(i in 1:3) print(2*i) # for example #1
[1] 2

2.3 Controlling Execution and Writing Functions 21

[1] 4
[1] 6
> for(i in c("a","b","c")) print(i) # for example #2
[1] "a"
[1] "b"
[1] "c"
> for(i in 1:10) if(i%%3==0) print(i) # for example #3
[1] 3
[1] 6
[1] 9

character switch example:
> var="sin";x=1:3;y=switch(var,cos=cos(x),sin=sin(x))
> cat("the",var,"of",x,"is",round(y,digits=3),"\n")
the sin of 1 2 3 is 0.841 0.909 0.141

This example introduces two new functions: cat and round. Similarly to print,
the cat function concatenates and outputs several objects, where "nn" means the
newline character2, while round rounds the object values with the number of digits
defined by the second argument.

The elementwise logical operators are useful for filtering containers, such as
shown in this example:

> x=1:10;print(x)
[1] 1 2 3 4 5 6 7 8 9 10

> print(x>=3&x<8) # select some elements
[1] FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

> I=which(x>=3&x<8);print(I) # indexes of selection
[1] 3 4 5 6 7
> d=data.frame(x=1:4,f=factor(c(rep("a",2),rep("b",2))))
> print(d)
x f

1 1 a
2 2 a
3 3 b
4 4 b
> print(d[d$x<2|d$f=="b",]) # select rows
x f

1 1 a
3 3 b
4 4 b

The rep function replicates elements of vectors and lists. For instance,
rep(1:3,2) results in the vector: 1 2 3 1 2 3.

The power of R is highly enhanced by the definition of functions, which
similarly to other imperative languages (e.g., C, Java) define a portion of code
that can be called several times during program execution. A function is defined
as: name=function(arg1, arg2, ...) expression, where: name is the function

2For C language users, there is also the sprintf function (e.g., sprintf("float: %.2f
string: %s",pi,"pi")).

22 2 R Basics

name; arg1, arg2, ... are the arguments; and expression is a single command
or compound expression. Arguments can have default values by using arg=arg
expression in the function definition. Here, arg expression can be a constant or an
arbitrary R expression, even involving other arguments of the same function. The
three dots special argument (...) means several arguments that are passed on to
other functions (an example of ... usage is shown in Sect. 3.2).

The scope of a function code is local, meaning that any assignment (=) within
the function is lost when the function ends. If needed, global assignment in R is
possible using the «- operator (see Sect. 4.5 for an example). Also, a function can
only return one object, which is the value set under the return command or, if not
used, last line of the function. Functions can be recursive, i.e., a function that calls
the same function but typically with different arguments. Moreover, a function may
define other functions within itself.

As an example, the following code was edited in a file named functions.R
and computes the profit for the bag prices task (Sect. 1.7) and defines a recursive
function:

functions.R file
compute the bag factory profit for x:
x - a vector of prices
profit=function(x) # x - a vector of prices
{ x=round(x,digits=0) # convert x into integer
s=sales(x) # get the expected sales
c=cost(s) # get the expected cost
profit=sum(s*x-c) # compute the profit
return(profit)

local variables x, s, c and profit are lost from here
}

compute the cost for producing units:
units - number of units produced
A - fixed cost, cpu - cost per unit
cost=function(units,A=100,cpu=35-5*(1:length(units)))
{ return(A+cpu*units) }

compute the estimated sales for x:
x - a vector of prices, m - marketing effort
A, B, C - constants of the estimated function
sales=function(x,A=1000,B=200,C=141,

m=seq(2,length.out=length(x),by=-0.25))
{ return(round(m*(A/log(x+B)-C),digits=0))}

example of a simple recursive function:
fact=function(x=0) # x - integer number
{ if(x==0) return(1) else return(x*fact(x-1))}

In this example, although object x is changed inside function profit, such
change is not visible outside the function scope. The code also presents several
examples of default arguments, such as constants (e.g., C=141) and more complex
expressions (e.g., cpu=35-5*(1:length(units))). The last function

2.3 Controlling Execution and Writing Functions 23

(fact) was included only for demonstrative purposes of a recursive function,
since it only works for single numbers. It should be noted that R includes the
enhanced factorial function that works with both single and container objects.

When invoking a function call, arguments can be given in any order, provided the
argument name is explicitly used, under the form argname=object, where argname
is the name of the argument. Else, arguments are assumed from left to right.
The following session loads the previous code and executes some of its functions:

> source("functions.R") # load the code
> cat("class of profit is:",class(profit),"\n") # function
class of profit is: function
> x=c(414.1,404.2,408.3,413.2,395.0)
> y=profit(x); cat("maximum profit:",y,"\n")
maximum profit: 43899
> cat("x is not changed:",x,"\n")
x is not changed: 414.1 404.2 408.3 413.2 395
> cat("cost(x=",x,")=",cost(x),"\n")
cost(x= 414.1 404.2 408.3 413.2 395)= 12523 10205 8266 6298

4050
> cat("sales(x=",x,")=",sales(round(x)),"\n")
sales(x= 414.1 404.2 408.3 413.2 395)= 30 27 23 19 16
> x=c(414,404); # sales for 2 bags:
> cat("sales(x=",x,")=",sales(x),"\n")
sales(x= 414 404)= 30 27
> cat("sales(x,A=1000,m=c(2,1.75))=",sales(x,1000,m=c(2,1.75)),"

\n")
sales(x,A=1000,m=c(2,1.75))= 30 27
> # show 3! :
> x=3; cat("fact(",x,")=",fact(x),"\n")
fact(3)= 6

R users tend to avoid the definition of loops (e.g., for) in order to reduce
the number of lines of code and mistakes. Often, this can be achieved by using
special functions that execute an argument function over all elements of a container
(e.g., vector or matrix), such as: sapply, which runs over a vector or list; and
apply, which runs over a matrix or array. An example that demonstrates these
functions is shown next:

> source("functions.R") # load the code
> x=1:5 # show the factorial of 1:5
> cat(sapply(x,fact),"\n") # fact is a function
1 2 6 24 120
> m=matrix(ncol=5,nrow=2)
> m[1,]=c(1,1,1,1,1) # very cheap bags
> m[2,]=c(414,404,408,413,395) # optimum
show profit for both price setups:
> y=apply(m,1,profit); print(y) # profit is a function
[1] -7854 43899

The second argument of apply() is called MARGIN and indicates if the function
(third argument) is applied over the rows (1), columns (2), or both (c(1,2)).

24 2 R Basics

2.4 Importing and Exporting Data

The R tool includes several functions for importing and exporting data. Any R object
can be saved into a binary or ASCII (using an R external representation) with the
save function and then loaded with the load command. All R session objects,
i.e., the current workspace, can be saved with save.image(), which also occurs
with q("yes") (quiting function). Such workspace is automatically saved into a
.RData file. Similarly to when reading R source files, file names are assumed to
be found in the current working directory (corresponding to getwd()), unless the
absolute path is specified in the file names.

Text files can be read by using the readLines (all file or one line at the time)
functions. A text file can be generated by using a combination of: file (create
or open a connection), writeLines (write lines into a connection) and close
(close a connection); or sink (divert output to a connection) and console writing
functions (e.g., print or cat).

The next example shows how to save/load objects and text files:

> x=list(a=1:3,b="hello!") # x is a list
> save(x,file="x.Rdata",ascii=TRUE) # save into working

directory
> rm(x) # remove an object
> print(x) # gives an error
Error in print(x) : object ’x’ not found
> load("x.Rdata") # x now exists!
> print(x) # show x
$a
[1] 1 2 3

$b
[1] "hello!"

> t=readLines("x.Rdata") # read all text file
> cat("first line:",t[1],"\n") # show 1st line
first line: RDA2
> cat("first line:",readLines("x.Rdata",n=1),"\n")
first line: RDA2
> # write a text file using writeLines:
> conn=file("demo.txt") # create a connection
> writeLines("hello!", conn) # write something
> close(conn) # close connection
> # write a text file using sink:
> sink("demo2.txt") # divert output
> cat("hello!\n") # write something
> sink() # stop sink

A common way of loading data is to read tabular or spreadsheet data (e.g.,
CSV format) by using the read.table function (and its variants, such as
read.csv). It should be noted that read.table can also read files directly
from the Web, as shown in Sect. 7.4. The reverse operation is performed using the
write.table command. The “R data import/export” section of the R manual

2.4 Importing and Exporting Data 25

(accessed using help.start()) includes a wide range of data formats that can
be accessed by installing the foreign package, such as read.spss, read.mtp
(Minitab Portable Worksheet format), and read.xport (SAS XPORT format).
Other file formats can be read using other packages, such as Excel files (gdata
package and function read.xls), Web content (RCurlb package and getURL
function), relational databases (e.g., MySQL using package RMySQL), and text
corpus (tm package). A demonstrative example for reading and writing tabular data
is shown here:

> # create and write a simple data.frame:
> d=data.frame(day=1:2,mon=factor(c("Jan","Feb")),year=c(12,13))
> print(d)
day mon year

1 1 Jan 12
2 2 Feb 13
> write.table(d,file="demo.csv",row.names=FALSE,sep=";")
> # read the created data.frame:
> d2=read.table("demo.csv",header=TRUE,sep=";")
> print(d2)
day mon year

1 1 Jan 12
2 2 Feb 13
> # read white wine quality dataset from UCI repository:
> library(RCurl)
> URL="http://archive.ics.uci.edu/ml/machine-learning-databases/

wine-quality/winequality-white.csv"
> wine=getURL(URL)
write "winequality-white.csv" to working directory:
> write(wine,file="winequality-white.csv")
read file:
> w=read.table("winequality-white.csv",header=TRUE,sep=";")
> cat("wine data (",nrow(w),"x",ncol(w),")\n") # show nrow x

ncol
wine data (4898 x 12)

Any R graphic can be saved into a file by changing the output device driver,
creating the graphic and then closing the device (dev.off()). Several graphic
devices are available, such as pdf, png, jpeg, and tiff. The next example
shows the full code used to create the top left graph of Fig. 1.3:

create PDF file:
DIR="" # change if different directory is used
pdf(paste(DIR,"sumbits.pdf",sep=""),width=5,height=5)

sumbinint=function(x) # sum of bits of an integer
{ return(sum(as.numeric(intToBits(x))))}

sumbits=function(x) # sum of bits of a vector
{ return(sapply(x,sumbinint))}

D=8; x=0:(2^D-1)# x is the search space (integer representation)
y=sumbits(x) # y is the number of binary bits of x
plot(x,y,type="l",ylab="evaluation function",

xlab="search space (x)",lwd=2)

26 2 R Basics

pmax=c(x[which.max(y)],max(y)) # maximum point coordinates
points(pmax[1],pmax[2],pch=19,lwd=2) # plot maximum point
legend("topleft","optimum",pch=19,lwd=2) # add a legend
dev.off() # close the device

This examples introduces the functions: intToBits, which converts an integer
into a binary representation; as.numeric, which converts an object into numeric;
and legend, which adds legends to plots.

2.5 Additional Features

This section discusses four additional R features: command line execution of R,
parallel computing, getting R source code of a function, and interfacing with other
computer languages.

The R environment can be executed directly from the operating system console,
under two possibilities:

• R [options] [< infile] [> outfile]; or
• R CMD command [arguments].

The full details can be accessed by running $ R -help in the operating system
console ($ is the Mac OS prompt). This direct mode can be used for several
operations, such as compiling files for use in R or executing an R file in batch
processing, without manual intervention. For example, if the previous shown code
for creating a pdf file is saved in a file called sumbits.R, then such code can be
directly executed in R by using: $ R --vanilla --slave < sumbits.R .

There is a CRAN task view for high-performance and parallel computing with R
(http://cran.r-project.org/web/views/HighPerformanceComputing.html). The view
includes several packages that are useful for high-performance computing, such as
multicore and parallel. An example of multicore use is shown next:

> library(multicore) # load the package
> x1=1:5;x2=5:10 # create 2 objects
> p1=parallel(factorial(x1)) # run in parallel
> p2=parallel(factorial(x2)) # run in parallel
> collect(list(p1,p2)) # collect results
$‘8995‘
[1] 1 2 6 24 120

$‘8996‘
[1] 120 720 5040 40320 362880 3628800

Given that all functions are stored as objects, it is easy in R to access the full
code of any given function, including built-in functions, by using the methods and
getAnywhere commands, such as:

http://cran.r-project.org/web/views/HighPerformanceComputing.html

2.6 Command Summary 27

methods(mean) # list all available methods for mean function
getAnywhere(mean.default) # show R code for default mean

function

The R environment can interface with other programming languages, such as
Fortran, C, and Java. Examples of interfaces with the C and Java languages can be
found in:

• C—http://adv-r.had.co.nz/C-interface.html; see also the “Writing R Extensions”
user manual, by typing help.start();

• Java—http://www.rforge.net/rJava/.

2.6 Command Summary

Inf Infinity value

NA Missing value

NULL Empty or null object

NaN Not a number constant

RCurl Package for network (HTTP/FTP/: : :) interface

apply() Apply a function over a matrix or array

as.numeric() Converts an object into numeric

barplot() Draw a bar plot

boxplot() Plot a box-and-whisker graph

c() Concatenate values into a vector

cat() Concatenate and output command

chisq.test() Pearson’s chi-squared test

class() Get class of object

close() Close a file connection

cos() Cosine trigonometric function

dev.off()) Close a graphical device

example() Show examples of a command

factorial() Compute the factorial of an object

file() Create or open a file connection

for() Loop execution command

function() Defines a function

getAnywhere() Retrieve an R object

getURL() Get Web content (package RCurl)

getwd() Get working directory

http://adv-r.had.co.nz/C-interface.html;
http://www.rforge.net/rJava/

28 2 R Basics

help() Get help on a particular subject

help.search() Get help on a text expression

help.start() Get the full R manual

hist() Plot a histogram

if() Conditional execution command

install.packages() Install a package

intToBits() Convert integer to binary representation

is.na() Check missing data

is.nan() Check if NaN

is.null() Check if NULL

jpeg() Set graphical device to jpeg file

lattice Package with high-level data visualization functions

legend() Add a legend to a plot

length() Number of elements of an object

library() Load a package

load() Load an object from file

ls() List created objects

max() Maximum of all values

mean() Mean of all values

median() Median of all values

methods() List methods for functions

min() Minimum of all values

multicore Package for parallel processing

names() Get and set the names of an object

parallel() Execute expression in a separate process

(package multicore)

pdf() Set graphical device to pdf file

pi Mathematical � value

pie() Plot a pie chart

plot() Generic plot of a object

png() Set graphical device to png file

print() Show an object

read.table() Read a tabular file (e.g., CSV)

readLines() Read lines from text file

rep() Function that replicates elements of vectors and lists

return() Returns an item from a function

rnorm() Create normal distribution random samples

round() Rounds the first argument values

2.7 Exercises 29

runif() Create real value uniform random samples

sample() Create integer uniform random samples

sapply() Apply a function over a vector

save() Save an object into a file

save.image() Save workspace

seq() Create a regular sequence

setwd() Set the working directory

set.seed() Set the random generation number

(used by sample, runif, : : :)

sin() Sine trigonometric function

sink() Divert output to a file connection

sort() Sorts a vector or factor

source() Execute R code from a file

sqrt() Square root of a number

str() Show internal structure of object

sum() Sum of all values

summary() Show a summary of the object

switch() Conditional control function

t.test() Performs a t-student test

tan() Tangent trigonometric function

tiff() Set graphical device to tiff file

wilcox.test() Wilcoxon test

which() Returns the indexes of an object that follow

a logical condition

which.max() Returns the indexes of the maximum value

which.min() Returns the indexes of the minimum value

while() Loop execution command

wireframe() Draw a 3D scatter plot (package lattice)

writeLines() Write lines into a text file

write.table() Write object into tabular file

2.7 Exercises

2.1. In the R environment console, create a vector v with 10 elements, all set to 0.
Using a single command, replace the indexes 3, 7, and 9 values of v with 1.

2.2. Create a vector v with all even numbers between 1 and 50.

2.3. Create matrix m of size 3�4, such that:

1. the first row contains the sequence 1, 2, 3, 4;
2. the second row contains the square root of the first row;

30 2 R Basics

3. the third row is computed after step 2 and contains the square root of the second
row; and

4. the fourth column is computed after step 3 and contains the squared values of the
third column.

Then, show matrix values and its row and column sums (use apply function) with
a precision of two decimal digits.

2.4. Create function counteven(x) that counts how many even numbers are
included in a vector x, using three approaches:

1. use a for() cycle with an if() condition;
2. use sapply() function; and
3. use a condition that is applied directly to x (without if).

Test the function over the object x=1:10.

2.5. Write in a file maxsin.R the full R code that is needed to create the
maxsin.pdf PDF file that appears in top right plot of Fig. 1.3 (Sect. 1.7 and
Eq. (1.2) explain how max sin is defined). Execute the R source file and check if
the PDF file is identical to the top right plot of Fig. 1.3.

2.6. Forest fires data exercise:

1. If needed, install and load the RCurl package.
2. Use the getURL and write functions to write the forest fires data http://

archive.ics.uci.edu/ml/machine-learning-databases/forest-fires/forestfires.csv
into a local file.

3. Load the local CSV file (forestfires.csv, the separator character is ",")
into a data frame.

4. Show the average temperature in August.
5. Select ten random samples of temperatures from the months February, July, and

August; then check if the average temperature differences are significant under
95 % confidence level t-student paired tests.

6. Show all records from August and with a burned area higher than 100.
7. Save the records obtained previously (6) into a CSV file named aug100.csv.

http://archive.ics.uci.edu/ml/machine-learning-databases/forest-fires/forestfires.csv
http://archive.ics.uci.edu/ml/machine-learning-databases/forest-fires/forestfires.csv

Chapter 3
Blind Search

3.1 Introduction

Full blind search assumes the exhaustion of all alternatives, where any previous
search does not affect how next solutions are tested (left of Fig. 3.1). Given that the
full search space is tested, the optimum solution is always found. Blind search is
only applicable to discrete search spaces and it is easy to encode in two ways. First,
by setting the full search space in a matrix and then sequentially testing each row
(solution) of this matrix. Second, in a recursive way, by setting the search space
as a tree, where each branch denotes a possible value for a given variable and all
solutions appear at the leaves (at the same level). Examples of two quite known
blind methods based on tree structures are depth-first and breadth-first algorithms.
The former starts at the root of the tree and traverses through each branch as far as
possible, before backtracking. The latter also starts at the root but searches on a level
basis, searching first all succeeding nodes of the root and then the next succeeding
nodes of the root succeeding nodes, and so on.

The major disadvantage of pure blind search is that it is not feasible when the
search space is continuous or too large, a situation that often occurs with real-world
tasks. Consider, for instance, the bag prices toy problem defined in Sect. 1.7, even
with a small search dimension (D D 5) the full search space is quite large for the
R tool (i.e., 10005 D 1015 D 1000 � 1012 D 1000 billion of searches!). Hence,
pure blind search methods are often adapted, by setting thresholds (e.g., depth-first
with a maximum depth of K), reducing the space searched or using heuristics. Grid
search (Hsu et al. 2003) is an example of a search space reduction method. Monte
Carlo search (Caflisch 1998), also known as random search, is another popular blind
method. The method is based on a repeated random sampling, with up to N sampled
points. This method is popular since it is computationally feasible and quite easy to
encode.

© Springer International Publishing Switzerland 2014
P. Cortez, Modern Optimization with R, Use R!, DOI 10.1007/978-3-319-08263-9__3

31

32 3 Blind Search

solution

Search space

solution

Search space

Fig. 3.1 Example of pure blind search (left) and grid search (right) strategies

The next sections present R implementations of three blind search methods: full
blind search, grid search, and Monte Carlo search. Also, these implementations are
tested on the demonstrative problems presented in Chap. 1.

3.2 Full Blind Search

This section presents two blind search functions: fsearch and dfsearch. The
former is a simpler function that requires the search space to be explicitly defined in
a matrix in the format solutions �D (argument Search), while the latter performs
a recursive implementation of the depth-first search and requires the definition of
the domain values for each variable to be optimized (argument domain). Both
functions receive as arguments the evaluation function (FUN), the optimization type
(type, a character with "min" or "max") and extra arguments, (denoted by ...
and that might be used by the evaluation function FUN). These functions were
encoded in a file named blind.R:

blind.R file

full bind search method
search - matrix with solutions x D
FUN - evaluation function
type - "min" or "max"
... - extra parameters for FUN
fsearch=function(search,FUN,type="min",...)
{
x=apply(search,1,FUN,...) # run FUN over all search rows
ib=switch(type,min=which.min(x),max=which.max(x))
return(list(index=ib,sol=search[ib,],eval=x[ib]))

}

3.2 Full Blind Search 33

depth-first full search method
l - level of the tree
b - branch of the tree
domain - vector list of size D with domain values
FUN - eval function
type - "min" or "max"
D - dimension (number of variables)
x - current solution vector
bcur - current best sol
... - extra parameters for FUN
dfsearch=function(l=1,b=1,domain,FUN,type="min",
D=length(domain),

x=rep(NA,D),
bcur=switch(type,min=list(sol=NULL,eval=Inf),

max=list(sol=NULL,eval=-Inf)),
...)

{ if((l-1)==D) # "leave" with solution x to be tested:
{ f=FUN(x,...);fb=bcur$eval
ib=switch(type,min=which.min(c(fb,f)),

max=which.max(c(fb,f)))
if(ib==1) return (bcur) else return(list(sol=x,eval=f))

}
else # go through sub branches

{ for(j in 1:length(domain[[l]]))
{ x[l]=domain[[l]][j]
bcur=dfsearch(l+1,j,domain,FUN,type,D=D,

x=x,bcur=bcur,...)
}

return(bcur)
}

}

where dfsearch is a recursive function that tests if the tree node is a leave,
computing the evaluation function for the respective solution, else traverses through
the node sub branches. This function requires some memory state variables (l, b, x
and bcur) that are changed each time a new recursive call is executed. The domain
of values is stored in a vector list of length D, since the elements of this vector can
have different lengths, according to their domain values.

The next R code tests both blind search functions for the sum of bits and max
sin tasks (Sect. 1.7, D D 8):

binary-blind.R file

source("blind.R") # load the blind search methods

read D bits from integer x:
binint=function(x,D)
{ x=rev(intToBits(x)[1:D]) # get D bits
remove extra 0s from raw type:
as.numeric(unlist(strsplit(as.character(x),""))[(1:D)*2])

}

34 3 Blind Search

convert binary vector into integer: code inspired in
http://stackoverflow.com/questions/12892348/
in-r-how-to-convert-binary-string-to-binary-or-decimal-value
intbin=function(x) sum(2^(which(rev(x==1))-1))

sum a raw binary object x (evaluation function):
sumbin=function(x) sum(as.numeric(x))

max sin of binary raw object x (evaluation function):
maxsin=function(x,Dim) sin(pi*(intbin(x))/(2

^Dim))

D=8 # number of dimensions
x=0:(2^D-1) # integer search space
set full search space in solutions x D:
search=t(sapply(x,binint,D=D))
set the domain values (D binary variables):
domain=vector("list",D)
for(i in 1:D) domain[[i]]=c(0,1) # bits

sum of bits, fsearch:
S1=fsearch(search,sumbin,"max") # full search
cat("fsearch best s:",S1$sol,"f:",S1$eval,"\n")

sum of bits, dfsearch:
S2=dfsearch(domain=domain,FUN=sumbin,type="max")
cat("dfsearch best s:",S2$sol,"f:",S2$eval,"\n")

max sin, fsearch:
S3=fsearch(search,maxsin,"max",Dim=8) # full search
cat("fsearch best s:",S3$sol,"f:",S3$eval,"\n")

max sin, dfsearch:
S4=dfsearch(domain=domain,FUN=maxsin,type="max",Dim=8)
cat("dfsearch best s:",S4$sol,"f:",S4$eval,"\n")

where binint is an auxiliary function that selects only D bits from the raw
object returned by intToBits. The intToBits returns 32 bits in a reversed
format, thus the rev R function is also applied to set correctly the bits order. Given
that the raw type includes two hex digits, the purpose of the last line of function
binint is to remove extra 0 characters from the raw object. Such line uses some
R functions that were not described in the previous chapter: as.character—
convert to character type; strsplit—split a character vector into substrings;
and unlist—transforms a list into a vector. The following R session exemplifies
the effect of the binint code (and newly introduced R functions):

> x=intToBits(7)[1:4]; print(x)
[1] 01 01 01 00
> x=rev(x); print(x)
[1] 00 01 01 01
> x=strsplit(as.character(x),""); print(x)
[[1]]
[1] "0" "0"

[[2]]

3.2 Full Blind Search 35

[1] "0" "1"

[[3]]
[1] "0" "1"

[[4]]
[1] "0" "1"

> x=unlist(x); print(x)
[1] "0" "0" "0" "1" "0" "1" "0" "1"
> x=as.numeric(x[(1:4)*2]); print(x)
[1] 0 1 1 1

The generic sapply function uses the defined binint function in order to
create the full binary search space from an integer space. Given that sapply returns
a D� solutions matrix, the t R function is used to transpose the matrix into the
required solutions �D format. The result of executing file binary-blind.R is:

> source("binary-blind.R")
fsearch best s: 1 1 1 1 1 1 1 1 f: 8
dfsearch best s: 1 1 1 1 1 1 1 1 f: 8
fsearch best s: 1 0 0 0 0 0 0 0 f: 1
dfsearch best s: 1 0 0 0 0 0 0 0 f: 1

where both methods (fsearch and dfsearch) return the optimum sum of bits
and max sin solutions.

Turning to the bag prices task (Sect. 1.7), as explained previously, the search
of all space of solutions (10005) is not feasible in practical terms. However, using
domain knowledge, i.e., the original problem formulation assumes that the price for
each bag can be optimized independently of other bag prices, it is easy to get the
optimum solution, as shown in file bag-blind.R:

bag-blind.R file

source("blind.R") # load the blind search methods
source("functions.R") # load profit(), cost() and sales()

auxiliary function that sets the optimum price for
one bag type (D), assuming an independent influence of
a particular price on the remaining bag prices:
ibag=function(D) # D - type of bag
{ x=1:1000 # price for each bag type
set search space for one bag:
search=matrix(ncol=5,nrow=1000)
search[]=1; search[,D]=x
S1=fsearch(search,profit,"max")
S1$sol[D] # best price

}

compute the best price for all bag types:
S=sapply(1:5,ibag)
show the optimum solution:
cat("optimum s:",S,"f:",profit(S),"\n")

36 3 Blind Search

The result of executing file bag-blind.R is:

> source("bag-blind.R")
optimum s: 414 404 408 413 395 f: 43899

It should be noted that while the original formulation of bag prices assumes an
independence when optimizing each bag price variable (and optimum profit is
43,899), there are other variations presented in this book where this assumption
is not true (see Sects. 5.7 and 6.2).

Given that pure blind search cannot be applied to real value search spaces (<),
no code is shown here for the sphere and rastrigin tasks. Nevertheless, these two
real value optimization tasks are handled in the next two sections.

3.3 Grid Search

Grid search reduces the space of solutions by implementing a regular hyper dimen-
sional search with a given step size. The left of Fig. 3.1 shows an example of a two
dimensional (3�3) grid search. Grid search is particularly used for hyperparameter
optimization of machine learning algorithms, such as neural networks or support
vector machines.

There are several grid search variants. Uniform design search (Huang et al. 2007)
is similar to the standard grid search method, except that it uses a different type of
grid, with lesser search points. Nested grid search is another variant that uses several
grid search levels. The first level is used with a large step size. Then, a second grid
level is applied over the best point, searching over a smaller area and with a lower
grid size. And so on. Nested search is not a pure blind method, since it incorporates
a greedy heuristic, where the next level search is guided by the result of the current
level search.

Depending on the grid step size, grid search is often much faster than pure bind
search. Also, depending on the number of levels and initial grid step size, nested
search might be much faster than standard grid search, but it also can get stuck more
easily on local minima. The main disadvantage of the grid search approach is that
it suffers from the curse of dimensionality, i.e., the computational effort complexity
is very high when the number of dimensions (variables to optimize) is large. For
instance, the standard grid search computational complexity is O.LD/, where L is
the number of grid search levels and D the dimension (variables to optimize). If only
L D 3 levels are considered and with a dimension of D D 30, this leads to 330 �
206 billion searches, which is infeasible under the R tool. Other disadvantages of
grid search methods include the additional parameters that need to be set (e.g., grid
search step, number of nested levels) and also the adopted type of blind search that
does not warranty achieving the optimum solution and, more importantly, might not
be particularly efficient in several practical applications.

The next code implements two functions for the standard grid search method
(gsearch and gsearch2) and one for the nested grid search (ngsearch):

3.3 Grid Search 37

grid.R file

standard grid search method (uses fsearch)
step - vector with step size for each dimension D
lower - vector with lowest values for each dimension
upper - vector with highest values for each dimension
FUN - evaluation function
type - "min" or "max"
... - extra parameters for FUN
gsearch=function(step,lower,upper,FUN,type="min",...)
{ D=length(step) # dimension
domain=vector("list",D) # domain values
L=vector(length=D) # auxiliary vector
for(i in 1:D)

{ domain[[i]]=seq(lower[i],upper[i],by=step[i])
L[i]=length(domain[[i]])

}
LS=prod(L)
s=matrix(ncol=D,nrow=LS) # set the search space
for(i in 1:D)

{
if(i==1) E=1 else E=E*L[i-1]
s[,i]=rep(domain[[i]],length.out=LS,each=E)
}

fsearch(s,FUN,type,...) # best solution
}

standard grid search method (uses dfsearch)
gsearch2=function(step,lower,upper,FUN,type="min",...)
{ D=length(step) # dimension
domain=vector("list",D) # domain values
for(i in 1:D) domain[[i]]=seq(lower[i],upper[i],by=step[i])
dfsearch(domain=domain,FUN=FUN,type=type,...) # solution

}

nested grid search method (uses fsearch)
levels - number of nested levels
ngsearch=function(levels,step,lower,upper,FUN,type,...)
{ stop=FALSE;i=1 # auxiliary objects
bcur=switch(type,min=list(sol=NULL,eval=Inf),

max=list(sol=NULL,eval=-Inf))
while(!stop) # cycle while stopping criteria is not met
{

s=gsearch(step,lower,upper,FUN,type,...)
if needed, update best current solution:
if((type=="min" && s$eval<bcur$eval)||

(type=="max" && s$eval>bcur$eval)) bcur=s
if(i<levels) # update step, lower and upper:
{ step=step/2
interval=(upper-lower)/4
lower=sapply(lower,max,s$sol-interval)
upper=sapply(upper,min,s$sol+interval)

}

38 3 Blind Search

if(i>=levels || sum((upper-lower)<=step)>0) stop=TRUE
else i=i+1

}
return(bcur) # best solution

}

All functions require the setting of the grid step (step, numeric vector) and
lower and upper bounds (vectors lower and upper). The first function uses
the fsearch function, while the second one uses the recursive blind variant
(dfsearch), both described in Sect. 3.2. The gsearch function contains more
code in comparison with gsearch2, since it requires setting first the search space.
This is achieved by using the useful rep function with the each argument. For
example, rep(1:2,each=2) returns the vector: 1 1 2 2. The second grid
search function (gsearch2) is simpler to implement, given that it performs a direct
call of the depth-first search.

The nested grid function uses a simple cycle that calls gsearch and whose
maximum number of iterations depends on the levels argument. The cycle also
stops when the range set by the upper and lower bounds is lower than the step
size. The next level search is set around the best solution of the current grid search
and with half of the current step size. The lower and upper bounds are changed
accordingly and the min and max functions are used to avoid setting a search space
larger than the original bounds. For some configurations of the step, lower and
upper arguments, this nested function might repeat on the next level the evaluation
of solutions that were previously evaluated. For the sake of simplicity, the nested
grid code is kept with this handicap, although it could be enhanced by implementing
a cache that stores previous tested solutions in memory and only computes the
evaluation function for new solutions.

The next code explores the three implemented grid search methods for the bag
prices task of Sect. 1.7:

bag-grid.R file

source("blind.R") # load the blind search methods
source("grid.R") # load the grid search methods
source("functions.R") # load the profit function

grid search for all bag prices, step of 100$
PTM=proc.time() # start clock
S1=gsearch(rep(100,5),rep(1,5),rep(1000,5),profit,"max")
sec=(proc.time()-PTM)[3] # get seconds elapsed
cat("gsearch best s:",S1$sol,"f:",S1$eval,"time:",sec,"s\n")

grid search 2 for all bag prices, step of 100$
PTM=proc.time() # start clock
S2=gsearch2(rep(100,5),rep(1,5),rep(1000,5),profit,"max")
sec=(proc.time()-PTM)[3] # get seconds elapsed
cat("gsearch2 best s:",S2$sol,"f:",S2$eval,"time:",sec,"s\n")

3.3 Grid Search 39

nested grid with 3 levels and initial step of 500$
PTM=proc.time() # start clock
S3=ngsearch(3,rep(500,5),rep(1,5),rep(1000,5),profit,"max")
sec=(proc.time()-PTM)[3] # get seconds elapsed
cat("ngsearch best s:",S3$sol,"f:",S3$eval,"time:",sec,"s\n")

This code includes the proc.time R function, which returns the time elapsed
(in seconds) by the running process and that is useful for computational effort
measurements. The result of executing file bag-grid.R is:

> source("bag-grid.R")
gsearch best s: 401 401 401 401 501 f: 43142 time: 4.149 s
gsearch2 best s: 401 401 401 401 501 f: 43142 time: 5.654 s
ngsearch best s: 376.375 376.375 376.375 501.375 501.375 f:

42823 time: 0.005 s

Under the tested settings, the pure grid search methods execute 10 searches per
dimension, leading to a total of 105 D 100;000 evaluations, achieving the same
solution (43,142) under a similar computational effort.1 The nested grid achieves
a worst solution (42,823) but under much less evaluations (2 searches for per
dimension and level, total of 25 � 3 D 96 tested solutions).

Regarding the real value optimization tasks (sphere and rastrigin, Sect. 1.7),
these can be handled by grid search methods, provided that the dimension adopted
is small. The next code shows an example for D D 2 and range of Œ�5:2; 5:2�

(commonly used within these benchmark functions):

real-grid.R file

source("blind.R") # load the blind search methods
source("grid.R") # load the grid search methods

real-value functions: sphere and rastrigin:
sphere=function(x) sum(x^2)
rastrigin=function(x) 10*length(x)+sum(x

^2-10*cos(2*pi*x))

cat("sphere:\n") # D=2, easy task
S=gsearch(rep(1.1,2),rep(-5.2,2),rep(5.2,2),sphere,"min")
cat("gsearch s:",S$sol,"f:",S$eval,"\n")
S=ngsearch(3,rep(3,2),rep(-5.2,2),rep(5.2,2),sphere,"min")
cat("ngsearch s:",S$sol,"f:",S$eval,"\n")

cat("rastrigin:\n") # D=2, easy task
S=gsearch(rep(1.1,2),rep(-5.2,2),rep(5.2,2),rastrigin,"min")
cat("gsearch s:",S$sol,"f:",S$eval,"\n")
S=ngsearch(3,rep(3,2),rep(-5.2,2),rep(5.2,2),rastrigin,"min")
cat("ngsearch s:",S$sol,"f:",S$eval,"\n")

1Slightly different execution times can be achieved by executing distinct runs under the same code
and machine.

40 3 Blind Search

−6 −4 −2 0 2 4 6

0
10

20
30

40
50

60

−6
−4

−2
0

2
4

x1

x2

l

l

l

l
ll

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l
ll

l

l

l

l
l

l

l

l
ll

l

l

l

l l

l

l

l
ll

l

l

l

l
l

l

l

l
ll

l

l

l

l

−6 −4 −2 0 2 4 6

0
10

20
30

40
50

60

−6
−4

−2
 0

 2
 4

x1

x2

l

l

l

l
l

l
lllll

l
l

l

l

l

l

l

l

l

l

l
l

l
lllll

l
l

l

l

l

l

l

l

l

l

l
l

l
lllll

l
l

l

l

l

l

l

l

l

l

l
l

l
lllll

l
l

l

l

l

l

l

l

l

l

l
l

l
lllll

l
l

l

l

l

l

l

l

l

l

l
l

l
lllll

l
l

l

l

l

l

l

l

l

l

l
l

l
lllll

l
l

l

l

l

l

l

l

l

l

l
l

l
lllll

l
l

l

l

l

l

l

l

l

l

l
l

l
lllll

l
l

l

l

l

l

l
l

l

l

l
l

l
lllll

l
l

l

l

l

l

l
l

l

l

l
l

l
lllll

l
l

l

l

l

l

l
l

l

l

l
l

l
lllll

l
l

l

l

l

l

l l

l

l

l
l

l
lllll

l
l

l

l

l

l

l l

l

l

l
l

l
lllll

l
l

l

l

l

l

l l

l

l

l
l

l
lllll

l
l

l

l

l

l

l l

l

l

l
l

l
lllll

l
l

l

l

l

l

l
l

l

l

l
l

l
lllll

l
l

l

l

l

l

l
l

l

l

l
l

l
lllll

l
l

l

l

l

l

l

Fig. 3.2 Example of grid search using L D 10 (left) and L D 20 (right) levels for sphere
and D D 2

The execution result of file real-grid.R is:

sphere:
gsearch s: 0.3 0.3 f: 0.18
ngsearch s: -0.1 -0.1 f: 0.02
rastrigin:
gsearch s: -1.9 -1.9 f: 11.03966
ngsearch s: -0.1 -0.1 f: 3.83966

Good solutions were achieved, close to the optimum solution of s D .0; 0/ and
f D 0. Figure 3.2 shows how the space is searched when using the standard
grid search for sphere when using L D 10 (left) and L D 20 search levels
(right) for each dimension. The three dimensional plots were achieved using the
scatterplot3d function of the scatterplot3d package.

3.4 Monte Carlo Search

Monte Carlo is a versatile numerical method that is easy to implement and is
applicable to high-dimensional problems (in contrast with grid search), ranging
from Physics to Finance (Caflisch 1998). The method consists in a random
generation of N points, using a given probability distribution over the problem
domain. The computational effort complexity is O.N /.

More details about implementing Monte Carlo methods in R can be found in
Robert and Casella (2009). In this book, we present a very simple implementation
of the Monte Carlo search, which adopts the uniform distribution U .lower; upper/
and includes only four lines of code:

montecarlo.R file

montecarlo uniform search method
N - number of samples

3.4 Monte Carlo Search 41

lower - vector with lowest values for each dimension
upper - vector with highest values for each dimension
domain - vector list of size D with domain values
FUN - evaluation function
type - "min" or "max"
... - extra parameters for FUN
mcsearch=function(N,lower,upper,FUN,type="min",...)
{ D=length(lower)
s=matrix(nrow=N,ncol=D) # set the search space
for(i in 1:N) s[i,]=runif(D,lower,upper)
fsearch(s,FUN,type,...) # best solution

}

The proposed implementation is tested here for the bag prices (D D 5) and real
value tasks (sphere and rastrigin, D 2 f2; 30g) by using N D 10;000 uniform
samples:

test-mc.R file

source("blind.R") # load the blind search methods
source("montecarlo.R") # load the monte carlo method
source("functions.R") # load the profit function

N=10000 # set the number of samples
cat("monte carlo search (N:",N,")\n")

bag prices
cat("bag prices:")
S=mcsearch(N,rep(1,5),rep(1000,5),profit,"max")
cat("s:",S$sol,"f:",S$eval,"\n")

real-value functions: sphere and rastrigin:
sphere=function(x) sum(x^2)
rastrigin=function(x) 10*length(x)+sum(x

^2-10*cos(2*pi*x))

D=c(2,30)
label="sphere"
for(i in 1:length(D))

{ S=mcsearch(N,rep(-5.2,D[i]),rep(5.2,D[i]),sphere,"min")
cat(label,"D:",D[i],"s:",S$sol[1:2],"f:",S$eval,"\n")

}
label="rastrigin"
for(i in 1:length(D))

{ S=mcsearch(N,rep(-5.2,D[i]),rep(5.2,D[i]),rastrigin,"min")
cat(label,"D:",D[i],"s:",S$sol[1:2],"f:",S$eval,"\n")

}

To simplify the analysis of the obtained results, the code only shows the optimized
values for the first two variables (x1 and x2). Given that Monte Carlo is a stochastic
method, each run will present a different result. An example execution (one run) is:

> source("test-mc.R")
monte carlo search (N: 10000)
bag prices:s: 349.7477 369.1669 396.1959 320.5007 302.3327 f:

42508

42 3 Blind Search

−6 −4 −2 0 2 4 6

0
10

20
30

40
50

60
70

−6
−4

−2
 0

 2
 4

x1

x2

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

ll

l

l

l

l

l

l

ll

l

ll

l

l

l

l

ll
l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l
l l

l

l

l

l

l

l

l

l

l l

l
l

l

l

l l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l
l

−6 −4 −2 0 2 4 6

0
20

40
60

80

−6
−4

−2
 0

 2
 4

x1

x2

ll

l

ll

l
l

l
l

l

l

l

ll

l

l

l l

ll

l

l

l

l
l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l l
l

l
l

l

l

l

l
l

l
l

l

l

l

l

ll l

l

l
l

l

ll

l
ll

l

l

l

l
l

l

l

l

ll
ll

l

l

ll

ll

l

ll l

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l
l
l

ll
l

l

l

l

l

l

l

l

l
l l

ll

l

l

l

l
l

l
l

ll

l

l

l
l

l

l

l

l ll

l
l

l

l

l
l

l

l

l
l

l
l

l

l

l

ll

l
l l

l

l

l

l

l

l

l
l

l

ll l

ll
ll

ll

l

l ll
l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

ll
l

ll
l

l
l

l

l

l

l
l

l

l l

l

l

l

l

l

l

l

l

l
l

l
ll

l

l

l
l

l

l
ll

ll

l
l

l
ll

l

ll

l
l

l

l
l

ll
l

l

l

l

l

l
l

l

l

l

l

l

ll
l

l

l

l

l

l

l
l

l

l l

l

l

l

l

l
l

l

l

l

l

l

l
ll

l

l
ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

l

l

l

l
l

ll
l

l

l

l l

l
l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l
ll

l

l

l

l

ll

l

l

l

l

l

ll

l

l
l

l

l l

l
l l

l

l
ll

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l
l

ll

l

l
l
ll

l

l

l

l

l
l

l

l

l

ll

l

l

l

ll

l

l
l

l

l

l

l

l

l

l l

ll

l

ll

l

l

l

l

l

l

ll l

l

l

l

l
l

l l

l

ll
l

l

l

l
l

l l

l

l

l

l

l
ll ll

l

l

l

l

l

l
l

ll

l l

l

l
l

l

l
ll

l

l

l

l
l

l

l

l

l
l

l

l
l

l

l
l

l
l

l

l

l

l
l

l

l

l
ll

l l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

ll
l

l
l

l

l
l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l
ll

l

l

l

l

l
l

ll

l

l

l
l

l

l

l

l

l
l l

l

ll

l

l

l

l l
l

l
l l

l

l

l
l

l
l

l
l

l
ll l

l

l l

l

l
l

l
l

l

l

l

l

l

l

l

l

l
l

l
l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l
l

l

l
l

l

l

ll

l
l

l

l
l

l l
l

l
l

l

l

l

l

l
l

l

l
l

l

l
l

l

l

l
l

l

ll

l

l

ll

l

l

l

l

l
ll

l

l
l

l

ll

l
lll

l

l

l l

l

l
ll

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l
l

l

l

l
l

l

l ll

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
ll

l

l
ll

l

l

l

l
l

l

l

l

l ll

l

l

l

l l

l
l

l

l

l

l
l

l
l
l

l

l
l l l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l
l

l

l

l

l

l

l

l
l

l

ll

l

l
l

l

l

l
l

l

l

l
l

ll

l

l ll

l

l

l

l

l

l

l

l

ll

l

l
l

l
l

l

l l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l
l ll

l

l

l
l

l l l

l
l

l

ll

l

l

l

l

l

l

l

l

l

ll

l

l ll

l
l ll

l l

l

l

l
l

l
l

l
l

l

l l

l

ll
l

l
l

l

l
l ll l

l

l l

l

l

l

l
l

Fig. 3.3 Example of Monte Carlo search using N D 100 (left) and N D 1;000 (right) samples
for sphere and D D 2

sphere D: 2 s: -0.01755296 0.0350427 f: 0.001536097
sphere D: 30 s: -0.09818928 -1.883463 f: 113.7578
rastrigin D: 2 s: -0.0124561 0.02947438 f: 0.2026272
rastrigin D: 30 s: 0.6508581 -3.043595 f: 347.1969

Under the tested setup (N D 10;000), interesting results were achieved for the
sphere and rastrigin tasks when D D 2. However, when the dimension increases
(D D 30) the optimized solutions are further away from the optimum value
(f D 0). For demonstration purposes, Fig. 3.3 shows two examples of Monte Carlo
searches for sphere and D D 2 (left plot with N D 100 and right graph with
N D 1;000).

3.5 Command Summary

dfsearch() Depth-first blind search (chapter file "blind.R")

fsearch() Full blind search (chapter file "blind.R")

gsearch() Grid search (chapter file "grid.R")

mcsearch() Monte Carlo search (chapter file "montecarlo.R")

ngsearch() Nested-grid search (chapter file "grid.R")

proc.time() Time elapsed by the running process

rev() Reversed version of an object

scatterplot3d Package that implements scatterplot3d()

scatterplot3d() Plot a 3D point cloud (package scatterplot3d)

strsplit() Split elements of character vector

t() Matrix transpose

unlist() Convert list to vector

3.6 Exercises 43

3.6 Exercises

3.1. Explore the optimization of the binary max sin task with a higher dimension
(D D 16), under pure blind, grid, and Monte Carlo methods. Show the optimized
solutions, evaluation values, and time elapsed (in seconds). For the grid and Monte
Carlo methods, use directly the fsearch function, by changing only the integer
space (object x of the file "binary-blind.R") with a maximum of N D 1;000

searches. Tip: use seq() for setting the grid search integer space and sample()
for Monte Carlo.

3.2. Consider the bag prices (D D 5). Adapt the file "bag-grid.R" such that
two grid searches are performed over the range Œ350; 450� with a step size of 11$ in
order to show the solution and evaluation values. The first search should be executed
using gsearch function, while the second search should be implemented using
the depth-first method (dfsearch function). Tip: use the seq function to set the
domain of values used by dfsearch.

3.3. Consider the rastrigin task with a dimension of D D 30. Using the Monte
Carlo method, explore different N values within the range {100,1,000,10,000}.
Execute 30 runs for each N value and compare if the average differences are
statistically significant at the 95 % confidence level under a pairwise t-student test.
Also, plot the boxplots for the results due to each N value.

Chapter 4
Local Search

4.1 Introduction

In contrast with the blind search methods presented in Chap. 3, modern optimization
techniques are based on a guided search, where new solutions are generated
from existing solutions. Local search, often termed single-state search, includes
several methods that focus their attention within a local neighborhood of a given
initial solution, as shown in Fig. 4.1. A priori knowledge, such as problem domain
heuristics, can be used to set the initial solution. A more common approach is to set
the initial point randomly and perform several restarts (also known as runs).

The main differences within local methods is set on how new solutions are
defined and what is kept as the current solution (corresponding to functions change
and select of Algorithm 1). The next sections describe how three local search
methods, namely hill climbing, simulated annealing, and tabu search, can be adopted
in the R tool. This chapter also includes a section that describes how to compare
search methods in R, by providing a demonstrative example that compares two local
search methods with random search.

4.2 Hill Climbing

Hill climbing is a simple local optimization method that “climbs” up the hill until
a local optimum is found (assuming a maximization goal). The method works
by iteratively searching for new solutions within the neighborhood of current
solution, adopting new solutions if they are better, as shown in the pseudo-code
of Algorithm 2. The purpose of function change is to produce a slightly different
solution, by performing a full search in the whole neighborhood or by applying a
small random change in the current solution values. It should be noted that while the

© Springer International Publishing Switzerland 2014
P. Cortez, Modern Optimization with R, Use R!, DOI 10.1007/978-3-319-08263-9__4

45

46 4 Local Search

Fig. 4.1 Example of a local
search strategy

Search space

neighborhood

initial
solution

Algorithm 2 Pure hill climbing optimization method
1: Inputs: S; f; C F S is the initial solution, f is the evaluation function, C includes control

parameters
2: i 0 F i is the number of iterations of the method
3: while not termination_cri teria.S; f; C; i/ do
4: S 0 change.S; C / F new solution
5: B best.S; S 0; f / F best solution for next iteration
6: S B F deterministic select function
7: i i C 1

8: end while
9: Output: B F the best solution

standard hill climbing algorithm is deterministic, when random changes are used for
perturbing a solution, a stochastic behavior is achieved. This is why hill climbing is
set at the middle of the deterministic/stochastic dimension in Fig. 1.2.

There are several hill climbing variants, such as steepest ascent hill climbing
(Luke 2012), which searches for up to N solutions in the neighborhood of S and
then adopts the best one; and stochastic hill climbing (Michalewicz et al. 2006),
which replaces the deterministic select function, selecting new solutions with a
probability of P (a similar strategy is performed by the simulated annealing method,
discussed in the next section).

The R implementation of the standard hill climbing method is coded in file
hill.R:

hill.R file

pure hill climbing:
par - initial solution
fn - evaluation function
change - function to generate the next candidate
lower - vector with lowest values for each dimension
upper - vector with highest values for each dimension
control - list with stopping and monitoring method:

4.2 Hill Climbing 47

$maxit - maximum number of iterations
$REPORT - frequency of monitoring information
type - "min" or "max"
... - extra parameters for FUN
hclimbing=function(par,fn,change,lower,upper,control,

type="min",...)
{ fpar=fn(par,...)
for(i in 1:control$maxit)

{
par1=change(par,lower,upper)
fpar1=fn(par1,...)
if(control$REPORT>0 &&(i==1||i%%control$REPORT==0))
cat("i:",i,"s:",par,"f:",fpar,"s’",par1,"f:",fpar1,"\n")

if((type=="min" && fpar1<fpar)
|| (type=="max" && fpar1>fpar)) { par=par1;fpar=fpar1 }

}
if(control$REPORT>=1) cat("best:",par,"f:",fpar,"\n")
return(list(sol=par,eval=fpar))

}

slight random change of vector par:
par - initial solution
lower - vector with lowest values for each dimension
upper - vector with highest values for each dimension
dist - random distribution function
round - use integer (TRUE) or continuous (FALSE) search
... - extra parameters for dist
examples: dist=rnorm, mean=0, sd=1; dist=runif, min=0,max=1
hchange=function(par,lower,upper,dist,round=TRUE,...)
{ D=length(par) # dimension
step=dist(D,...) # slight step
if(round) step=round(step)
par1=par+step
return par1 within [lower,upper]:
return(ifelse(par1<lower,lower,ifelse(par1>upper,upper,par1)))

}

The main function (hclimbing) receives an initial search point (par),
an evaluation function (named now fun for coherence purposes with optim, see
next section), lower and upper bounds, a control object and optimization
type. The control list is used to set the maximum number of iterations
(control$maxit) and monitor the search, showing the solutions searched every
control$REPORT iterations.

The change function (hchange) produces a small perturbation over a given
solution (par). New values are achieved by adopting a given random distribution
function (dist). Given the goal of getting a small perturbation, the normal
(Gaussian) distribution N .0; 1/ is adopted in this book, corresponding to the
arguments dist=rnorm, mean=0, sd=1. This means that in most cases
very small changes are performed (with an average of zero), although large
deviations might occur in a few cases. The new solution is kept within the range
Œlower,upper� by using the useful ifelse(condition, yes, no) R function

48 4 Local Search

that performs a conditional element selection (returns the values of yes if the
condition is true, else returns the elements of no). For example, the result of
x=c(-1,4,9);sqrt(ifelse(x>=0,x,NA)) is NA 2 3.

For demonstration purposes, the next R code executes ten iterations of a hill
climbing search for the sum of bits task (Sect. 1.7), starting from the origin (all
zero) solution:

sumbits-hill.R file

source("hill.R") # load the hill climbing methods

sum a raw binary object x (evaluation function):
sumbin=function(x) sum(x)

hill climbing for sum of bits, one run:
D=8 # dimension
s=rep(0,D) # c(0,0,0,0,...)
C=list(maxit=10,REPORT=1) # maximum of 10 iterations
ichange=function(par,lower,upper) # integer change
{ hchange(par,lower,upper,rnorm,mean=0,sd=1) }

hclimbing(s,sumbin,change=ichange,lower=rep(0,D),upper=rep(1,D),
control=C,type="max")

One example of such execution is:

> source("sumbits-hill.R")
i: 1 s: 0 0 0 0 0 0 0 0 f: 0 s’ 0 0 0 1 0 0 1 0 f: 2
i: 2 s: 0 0 0 1 0 0 1 0 f: 2 s’ 0 0 0 1 0 0 1 0 f: 2
i: 3 s: 0 0 0 1 0 0 1 0 f: 2 s’ 0 0 0 0 1 1 0 0 f: 2
i: 4 s: 0 0 0 1 0 0 1 0 f: 2 s’ 1 0 0 1 0 0 1 0 f: 3
i: 5 s: 1 0 0 1 0 0 1 0 f: 3 s’ 0 0 0 0 1 0 0 1 f: 2
i: 6 s: 1 0 0 1 0 0 1 0 f: 3 s’ 1 1 0 1 1 0 0 1 f: 5
i: 7 s: 1 1 0 1 1 0 0 1 f: 5 s’ 0 1 0 1 0 1 0 0 f: 3
i: 8 s: 1 1 0 1 1 0 0 1 f: 5 s’ 0 0 0 1 0 1 1 0 f: 3
i: 9 s: 1 1 0 1 1 0 0 1 f: 5 s’ 1 0 1 1 1 0 1 0 f: 5
i: 10 s: 1 1 0 1 1 0 0 1 f: 5 s’ 1 1 0 1 1 1 1 1 f: 7
best: 1 1 0 1 1 1 1 1 f: 7

The sum of bits is an easy task and after ten iterations the hill climbing method
achieves a solution that is very close to the optimum (f D 8).

The next code performs a hill climbing for the bag prices (D D 5) and sphere
tasks (D D 2):

bs-hill.R file

source("hill.R") # load the hill climbing methods
source("functions.R") # load the profit function

hill climbing for all bag prices, one run:
D=5; C=list(maxit=10000,REPORT=10000) # 10000 iterations
s=sample(1:1000,D,replace=TRUE) # initial search
ichange=function(par,lower,upper) # integer value change

4.2 Hill Climbing 49

{ hchange(par,lower,upper,rnorm,mean=0,sd=1) }
hclimbing(s,profit,change=ichange,lower=rep(1,D),

upper=rep(1000,D),control=C,type="max")

hill climbing for sphere, one run:
sphere=function(x) sum(x^2)
D=2; C=list(maxit=10000,REPORT=10000)
rchange=function(par,lower,upper) # real value change
{ hchange(par,lower,upper,rnorm,mean=0,sd=0.5,round=FALSE) }

s=runif(D,-5.2,5.2) # initial search
hclimbing(s,sphere,change=rchange,lower=rep(-5.2,D),

upper=rep(5.2,D),control=C,type="min")

An execution example is:

> source("bs-hill.R")
i: 1 s: 136 332 716 748 781 f: 28946 s’ 135 332 716 749 781 f:

28890
i: 10000 s: 188 338 743 770 812 f: 31570 s’ 189 336 742 769 812

f: 31387
best: 188 338 743 770 812 f: 31570
i: 1 s: 1.884003 4.549536 f: 24.24775 s’ 2.142131 4.349898 f: 23

.51034
i: 10000 s: 0.001860534 0.009182373 f: 8.777755e-05 s’ 0.5428469

-0.304862 f: 0.3876236
best: 0.001860534 0.009182373 f: 8.777755e-05

Using 10,000 iterations, the hill climbing search improved the solution from 28,890
to 31,570 (bag prices) and from 23.51 to 0.00 (sphere). For demonstrative purposes,
Fig. 4.2 shows the searched “down the hill” (best) points for the sphere task.

Fig. 4.2 Example of hill
climbing search (only best
“down the hill” points are
shown) for sphere and
D D 2

−2 −1 0 1 2 3 4

0
 5

10
15

20
25

−2
−1

 0
 1

 2
 3

 4

x1

x2

lll

l

l l
l

l

l

l
l

l
l

l

l

l ll
l

l

ll l
l

l l
ll

ll l ll llllllll ll l lll llll
l

l lll lll l ll ll
ll llllll l
l ll llll ll lll

ll ll lll l
lllll llll ll lllll l ll lll ll

l
l ll ll ll l
lll

l
ll lllll lll ll

l
l lll lllll

l ll llll ll ll lll l
l

lllll ll lll l ll lll ll l lll l ll ll ll ll lll llll ll
l ll ll

lll lll l

l

l l
l

lll ll lllll l llll ll lll
l

ll
l

lll
l

lll lll l
l lll lllll ll l lll llll ll

l ll ll llll l ll l ll llll ll
l llll ll

l
lll lll ll ll llll ll ll

l
ll ll llll llll lll

l
ll l lll ll llllll llll l ll lllll lllll ll l lll lll l

ll l lllll ll
l

ll l
l

lll l ll
l

l lllll l
l

lll l ll ll llll
l ll l ll ll

l l ll lll l ll
lll llll

l
ll lllll l

lll ll lll ll ll ll ll
l

lll ll ll l lll lll ll lll ll lllll lllll lll
l

ll
l

lllll ll
l

ll l
l

lll lll ll llll llll ll ll llll lll l ll
l

lll
l

llll lllllll
l ll lllllll lll llll l lll ll l llllll ll lll llll

l
llll

l
lll llll ll ll ll lllll ll ll ll ll lll ll ll lll

l

ll
l

l lll l lll lllllll ll l
l ll lll

l
l llllll

l
l

lll ll ll ll ll ll ll
l

l
l

lll ll ll
l

ll ll lll lllll
l

lll lllll ll

l
llll ll lllll l
ll ll l ll lllll lll ll lll ll lll ll ll llll

l
l

l
llll l llll l lllll ll lll l lllll l

l
l ll
llll llll

l ll l
l

ll l
l

ll llll ll lll lll lll ll ll
ll

ll
ll

lllllll lll l
l

ll lll
ll l lll lll llllllll

l
l

lllll lllll lll ll l
l

l lll
l

ll
l l l ll

lllllllllll lll lll
l

ll llll lll llll ll ll llll l
ll

l ll llllll lllllll l lllllll l
l

lllll
l

ll ll llll
l

l lll lll lll llll l lll
ll

l l lll l
l

l lll llllll lll lll lll lllll lllll lll

l

ll ll ll
lll lll

l
l

lll
l

lll ll
l

lll llllll lll l ll ll ll
l

ll ll lll lll lll ll ll ll ll lllll llll lll llllll
ll l

l
lllll

ll llllll ll ll l lll
l

l l lll lll l llllllllll llll ll ll llll ll lll llll llll
l

ll ll llll lll lll llll ll lll

l
ll l lll ll

l
l l l

l lll l
l

ll lllllll ll lll
llll ll ll lllllll l l ll llll ll lll lll l ll lll ll lll lll ll lll ll ll

ll ll lll ll l llllll ll lllll l llll lll l lllll lll lll lll llll llll lll
l

lll l ll lllll ll
l

ll ll l llll lll lll lll l lll lll l
ll l ll

l
ll ll ll

l
l ll llll

l
ll l

l

lll
l

lll l lllll llllll
lll llll ll lll ll ll
l

lll llllllll lll lll
l

l llll ll

50 4 Local Search

4.3 Simulated Annealing

Simulated annealing is a variation of the hill climbing technique that was proposed
in the 1980s and that is inspired in the annealing phenomenon of metallurgy, which
involves first heating a particular metal and then perform a controlled cooling
(Luke 2012). This single-state method differs from the hill climbing search by
adopting a control temperature parameter (T) that is used to compute the probability
of accepting inferior solutions. In contrast with the stochastic hill climbing, which
adopts a fixed value for T , the simulated annealing uses a variable temperature value
during the search. The method starts with a high temperature and then gradually
decreases (cooling process) the control parameter until a small value is achieved
(similar to the hill climbing). Given that simulated annealing is a single-state
method, it is described in this chapter. However, it should be noted that for high
temperatures the method is almost equivalent to Monte Carlo search, thus behaving
more like a global search method (in particular if the change function is set to
perform high changes), while for low temperatures the method is similar to the hill
climbing local search (Michalewicz et al. 2006).

This book adopts the simulated annealing implementation of the optim R
function, which only performs minimization tasks and that executes several opti-
mization methods by setting argument method, such as:

• "Nelder-Mead"—Nelder and Mead or downhill simplex method;
• "BFGS"—a quasi-Newton method;
• "CG"—conjugate gradients method;
• "L-BFGS-B"—modification of the BFGS method with lower and upper

bounds; and
• "SANN"—simulated annealing.

Algorithm 3 presents the pseudo-code of the simulated annealing implementation,
which is based on the variant proposed by Bélisle (1992). This implementation
includes three search parameters: maxit—the maximum number of iterations;
temp (T)—the initial temperature; and tmax—the number of evaluations at each
temperature. By default, the values for the control parameters are maxit D 10;000,
T D 10, and tmax D 10. Also, new search points are generated using a Gaussian
Markov kernel with a scale proportional to the temperature. Nevertheless, these
defaults can be changed by setting two optim arguments: the control list and gr
(change) function. The last argument is useful for solving combinatorial problems,
i.e., when the representation of the solution includes discrete values. The optim
function returns a list with several components, such as $par—the optimized
values and $value—the evaluation of the best solution.

Similarly to the hill climbing demonstration, the sumbits-sann.R file
executes ten iterations of the simulated annealing for the sum of bits task:

sumbits-sann.R file
source("hill.R") # get hchange function
sum a raw binary object x (evaluation function):
minsumbin=function(x) (length(x)-sum(x)) # optim only minimizes!

4.3 Simulated Annealing 51

Algorithm 3 Simulated annealing search as implemented by the optim function
1: Inputs: S; f; C F S is the initial solution, f is the evaluation function, C contains control

parameters (maxit , T and tmax)
2: maxit get_maxit.C / F maximum number of iterations
3: T get_temperature.C / F temperature, should be a high number
4: tmax get_tmax.C / F number of evaluations at each temperature
5: f s f .S/ F evaluation of S

6: B S F best solution
7: i 0 F i is the number of iterations of the method
8: while i < maxit do F maxit is the termination criterion
9: for j D 1! tmax do F cycle j from 1 to tmax

10: S 0 change.S; C / F new solution (might depend on T)
11: f s0 f .S 0/ F evaluation of S 0

12: r U .0; 1/ F random number, uniform within Œ0; 1�

13: p exp .
f s0

�f s

T
/ F probability P.S; S 0; T / (Metropolis function)

14: if f s0 < f s _ r < p then S S 0 F accept best solution or worst if r < p

15: end if
16: if f s0 < f s then B S 0

17: end if
18: i i C 1

19: end for
20: T T

log .i=tmax/�tmaxCexp .1/
F cooling step (decrease temperature)

21: end while
22: Output: B F the best solution

SANN for sum of bits, one run:
D=8 # dimension
s=rep(0,D) # c(0,0,0,0,...)
C=list(maxit=10,temp=10,tmax=1,trace=TRUE,REPORT=1)
bchange=function(par) # binary change
{ D=length(par)
hchange(par,lower=rep(0,D),upper=rep(1,D),rnorm,mean=0,sd=1)

}
s=optim(s,minsumbin,gr=bchange,method="SANN",control=C)
cat("best:",s$par,"f:",s$value,"(max: fs:",sum(s$par),")\n")

Given that optim only performs minimization, the evaluation function needs to be
adapted (as discussed in Sect. 1.3). In this example, it was set to have a minimum of
zero. Also, given that method="SANN" does not include lower and upper bonds, it
is the responsibility of the change function (gr) to not generate unfeasible solutions.
In this case, the auxiliary binary change function (bchange) uses the hchange
function (from file hill.R) to set the 0 and 1 bounds for all D values. An execution
example of file sumbits-sann.R is:

> source("sumbits-sann.R")
sann objective function values
initial value 8.000000
iter 1 value 7.000000
iter 2 value 2.000000

52 4 Local Search

iter 3 value 2.000000
iter 4 value 1.000000
iter 5 value 1.000000
iter 6 value 1.000000
iter 7 value 1.000000
iter 8 value 1.000000
iter 9 value 1.000000
final value 1.000000
sann stopped after 9 iterations
best: 1 1 1 1 1 1 1 0 f: 1 (max: fs: 7)

The simulated annealing search is also adapted for bag prices (D D 5) and
sphere tasks (D D 2), by setting maxit D 10;000, T D 1;000 and tmax D 10

(file bs-sann.R):

bs-sann.R file

source("hill.R") # load the hchange method
source("functions.R") # load the profit function
eval=function(x) -profit(x) # optim minimizes!

hill climbing for all bag prices, one run:
D=5; C=list(maxit=10000,temp=1000,trace=TRUE,REPORT=10000)
s=sample(1:1000,D,replace=TRUE) # initial search
ichange=function(par) # integer value change
{ D=length(par)
hchange(par,lower=rep(1,D),upper=rep(1000,D),rnorm,mean=0,
sd=1)

}
s=optim(s,eval,gr=ichange,method="SANN",control=C)
cat("best:",s$par,"profit:",abs(s$value),"\n")

hill climbing for sphere, one run:
sphere=function(x) sum(x^2)
D=2; C=list(maxit=10000,temp=1000,trace=TRUE,REPORT=10000)

s=runif(D,-5.2,5.2) # initial search
SANN with default change (gr) function:
s=optim(s,sphere,method="SANN",control=C)
cat("best:",s$par,"f:",s$value,"\n")

An example execution of file bs-sann.R is:

> source("bs-sann.R")
sann objective function values
initial value -35982.000000
final value -39449.000000
sann stopped after 9999 iterations
best: 293 570 634 606 474 profit: 39449
sann objective function values
initial value 21.733662
final value 1.243649
sann stopped after 9999 iterations
best: -0.6856747 -0.8794882 f: 1.243649

4.4 Tabu Search 53

0 5 10 15 20

0
20

0
40

0
60

0
80

0
10

00

SANN execution (x tmax iterations)

te
m

pe
ra

tu
re

 (
T

)

−20 −15 −10 −5 0 5

0
 5

0
10

0
15

0
20

0
25

0
30

0

−10
 −5

 0
 5
 10

x1

x2

l
l

llll
l

l
llll
ll

lllllll
ll

l
l

l
ll

llll
l

l
ll

l
ll
l

lll
ll

l
l

l
lll
ll
l

lllll
l
ll

l
ll

l
l

ll
l

llll
l

l
l
llll

l
l

lllll
ll

l
lll

ll
l

l
ll

l
l

llllllll
l

l
lllllllllll
ll

l
l

ll
l

l
llll

l
llll

l
ll

ll
l
l

l
l

l
l

l
l
ll

ll

l

l
ll

ll

l
ll

l
l

l
l

l
l

ll

ll
l

l

l
ll

l

l

l

ll

l

l

l

ll
l

l
l

l
l

l

ll

ll

l

l

l
l

l
l

l

lll

l
l

l

l

lll
l

ll

ll

ll

l
l

l

l
l

l

l

l

l

l

ll

l

l
l

l

l
l

lll

ll

l

l
l

l

l

l

l

l

l

ll

ll

ll

l
l

lllll

l
l

l
ll

l

l

l

ll

l

l

l

ll

l
l

ll

l

ll

ll

llll

l

l
ll

l
ll

l
l

l

l
l

l

l

l

l
l

l

l
l

l

l
ll

ll

l

l

ll

l

l

l

lll

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

ll
l

l

l

l

l
l

l

l

l
l

l
l

l

l

l

l
ll

l

l
ll

l

l

l
ll
l

l

l

ll

ll

l

l

l

ll

l
l

l

l

l

l

ll

l

l

l

ll

l
l

l

l

l
l

l

l
l

l

l

l

l

ll

lll

l

l

l
l

l

l
ll

l
l

l
l

l
ll

l
l

l

ll

ll

l
l

l

l
l

ll

ll

l
l

l

l

l

llll

l

l
ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

ll

l

lll

l

l

l
l

l
l

l
l

ll

ll

l

l

l

l
l

l

l

lllll

ll

l
l

l

l

l

l

ll

ll
l

ll

l

l

l

l

l

l

l

ll

l

l
ll

l

l

l

l

l

l

l

l

l

l

llll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l
l
l

l

ll

l

l

ll

l
l

l
l

l

l

l

ll

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

ll

l

l

l

ll

l

ll

l

l

l

l

l

l
l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

ll
lll

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l
ll

l

l

l

l

l

l

llllll

l

l
l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l
l

l

l

l
l

ll

l
l

l

l

ll

ll
l

ll

l

l

lll

l

l

l

l

ll

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l
l

l

ll

l

ll

l

l
l

l
l

l
lll

ll

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

lll
l

l
ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

ll

l

ll
l

l

l

ll
l

l

l
l

ll
l

l

l

l

l

l

l
ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

lll
ll

l

l

l

l

ll

l

ll

l

l

ll

l

l

l

l

l
l

l

l

l

lll

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l
l

l

l

ll

ll

l
l

l

l

l

l
l

l

ll

l

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

lll

l

l

l
l

l

ll
l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

ll

l

l

l

ll

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

ll

l

l

lll

l

l

ll

l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
ll

l

l

l
l

l
l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

ll

l

l

l
lll

ll

l

l
l

l
l

l

l

l

l

l

l

l

l
l

l

lll

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l
l

l

l
l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll
l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

lll

l

l
l

l

ll

l

ll

l

l

l

lll
l

l
l

l

ll

l
l

l

l
l

l

l

l
l

l
l

l

l

l

l

l
l

l

ll

l

l

l

l

ll

l

l

l

ll

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ll

l
l

l

lll

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l
ll

l

ll

l

l

l

l

l

l

l
l

l

l
l

l
l

l

l

l

l

ll

l
l

l

ll

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

lll

l

l

l

l

l

l

l

ll

l

l
l

l

ll

l

l

l

l

l
l

l

l

l

l
l

l
ll

l

l

l

l
l
l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l
l

l
l

l

l
ll

ll

ll
l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l
l

l

l
l

l
l

l

l

l

l

l

ll

l

l
l

l

l

l
ll

l

l

l

l

l

l
l

l

l

l

l
lll
l

l

l

ll

l

ll
lll

l

l

l

l

l

l

l
ll

l

l

ll

l

l
l

l

l

l

l

ll

l
ll

l

l

ll

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l
ll

l

l

l

l

l

ll

l

l

l
ll

ll

l
ll

lll

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

ll

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l
l

l

l
ll

l
l

ll

l

l

l

ll

l

l

ll

ll
l

l

l

lll

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

ll
ll

l

l

l

ll

l

ll

l
l

ll
l

l

l

l

l
l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

ll

ll

l
l

l
l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l
ll

ll
ll

l

l

l

l

l
l

l

l

l

l

ll
l

l

l

l

lll

l

l
l

lll

ll

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

ll

l

l

l

ll

l

l

lll

ll
ll

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

lll
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l
l

l
l

l

l

l

ll

l

ll

l

l

l

l

ll

l

l

ll

l

l

ll

l
l

l

l

lll

l

l

l
l

l

l
l

l

ll

l

ll

l

l

ll

ll

l

l

l

l

lll
ll

l

l

l
l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l
l

ll

lll

l

l

ll
l
l

l
l

l

l

lll
l

l

l
l

ll

l
l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

llll

l

l

ll

l

l

l
l

l

l

llll

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l
ll

ll

l

l

l

l

l

lll
l

ll
l

l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l
l
l

l

l

l

ll
ll
l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

ll

l

l
l

l

l
l

l

l

lll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l
l

l
ll

ll

l
l

l

l

l
l

l

l
ll
l

l

l

l

l

l

l

l

l
l
l
l

l
ll

l

llll

l

l

l

ll

llll

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll
l

l

l

l

l

l

ll
l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

ll
l

l

ll

l

lll

ll

l

l

lll

l

l

l

l

l
l

l

l

l
l

l

l

l

lll

l

l

l

l

l

l

l

l
l

l

ll

ll

l

ll

l

l

l

llll

l

l

ll

l

l
l

l

l

ll

l

l

l

l
l

l
ll

l
l

l

llll

l

l
l

l

l

ll

lll

l

l

l

l

ll
l

l

l

l

l

lll
ll

l

l

l
ll

l
l

ll

l

ll

l

l

l

ll

l

l

l

l

llll
l

l

l

l

ll

l

l

l

ll

l
l

l

l

l

l

ll

l

l

lll

l

l

l
l

l

l

l

l

ll

l

l
l

l
l

l

l

ll

l

l

l

l

l

l
l

ll

l

l

l

ll
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

lll

ll

l

l

l
l

l

l

l

l

l

l
l

l
ll

l

l

l

l
l

ll

l

l

l

l

l
l

ll
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

l

l

l

ll

l

l

l
l

l

ll
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

ll

l
ll

l

l

l
l

l

l

l

lll
l

l

l

l

l
l
l

l

l

l

l

l

l

l

ll

l

ll

l

ll

l

l

l
ll

l

l
l
l

l

l

l
l

l

l

ll

l

ll
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

ll
l

l
l

l

l

l

l
l

l

l
l

l

l
l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l
l

l

l

l
ll

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

ll

l

l

lll
l

l
l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll
l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

ll

l

l

l

ll
l

l

l

l

l

l

l

l

l

ll
l

l

l

l
l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

ll

l

l

l

l
l

l

l
l

l

l
l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l
l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

ll

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

ll

l
l

l

l

l

l

l

l

l

l
ll

l

l

l

ll

l

l

l

l

l

l
ll

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

ll

l
l

ll
l

ll

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

ll

l

l

l

l

l

l

l
ll

l

l

l
ll

l

l

l

l

l

l

l

l

l
l

l
ll

ll

l

lll

l

l

ll

l
l

l

l

l
ll

l
l

l
l

l

ll

l

l

l
l

l
l

l

l

l
l

l

l

l

l

lll

ll

l

l
lll

ll

l

l

ll
ll

l

l

ll
l

l

l
l

l

l

l
l

l

l
lll

ll
l

ll
l

l

l

l
ll

l
l

lll
l

lllll
ll

l

llllll
l

l
l

l

ll

l
l

l

l

ll
l

lllll

l
l

l
ll

l

l

l

llllll

l
l

l

l

l
l

l

l

l
ll

l
l

ll
lllll
lll

l

l
ll

l
l

l
l

l
l

llll
l

l
l

l

l
l

l
l

l
llll
l

l
l

l
ll

l

l

l

l

l

l
l

l
l

ll

llll
l

l

l

l
l

l

l
l

l
l

lll

ll

l
ll

l
l

ll

ll

l

l

l
l

ll
l

l
l

l
l

ll
ll

l
l

l
l

l
l

l

l

lll

l
l

l
ll

l
ll

l

l
l

lll

l

l
llll

l

l
ll

l
lllllll

l

llllllll

l

llll

lll

l

l

l
l
ll
l

l

llll

ll

l

l
ll

llll
l

l
ll

l
l

ll

l

l
l

lll l
ll

l

l

ll

l

l

l

l

l

l
lllll

l

l
lll

l
ll

ll
l

lllllll
llll

l
ll

l
l

l

ll
l

l

llll
l

ll
l

l
l

l

l

l

l

ll

l

l

l

l
l

l
l

ll

l
l

l
lll

l

l

l
l

l

l

ll

l
l

l

l

l
l

ll
l

lll
l

l

ll

l

lllll

l

l
l

l
l

l

l
l

l
ll

l
ll

llll
ll

l

l

l
ll

l
l

l

l

l

l
l

l
ll

l

l
ll

llll

ll
l

l

l

ll

ll

l

l

l
l

l
l

l
l

ll

l

ll

ll

lll

l
l

l

lll
l

l

ll
l

lll

ll

l

ll

llll
l

l

llll

l

lll
l

l
lll

l

lllllllll
l

lllll

ll

lll

l

llllll

l

lll

l

ll

l

l

lllllllll

ll

ll

l

llll
l

l

l

l

ll

ll

l

l

l

lll

l

l

l

l

l
l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
ll

ll

l

l

l

l

l

ll

l

l

llll

l
ll

l

ll

l

l

ll

llll

l

l

ll

lll

l

lll

l

l

l
l

l

l

llll

l

l

l

l

l

l

l

l

l

llll
ll

l

l

l

l

l

lll

l

ll

l

l

l

ll

ll

l
l

l

l

l

ll

lll

l

l
l

l
l

l

l
l

ll

l

l

ll

l

ll

l

ll

l

l
l

l

l

l

l

l

l

l

ll

ll
l

ll
l

l

ll
l

llll

l

ll

ll

l

l

lll

l

l

l

ll

l

l

l

l

l
l

l

l

lll

ll

l

l
l

l

l

l

ll

l

l

l

ll

lll

llll
ll

lll

l
ll
l

l

l

l
l

ll

l

ll

l

ll

l

l

l

llll

l

ll
l

l

lll

l

l
l

l

lll

ll

l

l

l
l

ll
l

l

l

l
lll

ll

l

l

ll

l
l
ll

l

ll

l

l

l

l

l

l

ll
lll

l

lll

l

ll

l

l

l
l

l
ll

l
ll

l
l

l

l
l

l
ll

l

l

l

l
l

l

l

l

l
l

l
lll
l

l
l

l

l
lll
l

l

ll

l

ll

ll

l
ll

ll
l

l
ll

l

l

l

l

l

l
l

l

l

l
l

lllll

l

ll

l

l
l

l

lllll
lll

l
l

l

l
l

l
llllll
ll
llll

lll
l

l
l

l

ll
l

ll
l

l

l

l

l
l

l
l

l
l

ll
l

l

l
l

ll

l
lll

l

l
l

l
l

l

l
lll
l

ll
l

l
l

l
lll

l

ll
llll

l

l

llll
ll

l

ll

l

ll
ll

l
ll

l
l

l
ll
l

ll
l

l
lll

l

lllll

l
lllll

l

l
l

l
l

l

l
lll

l

l

l

l
l

llllll
l

l

l
l

l
ll

l
lll

lll
ll

l
lll

ll

l
l

l

lll
l

ll

l

l

l

l

l
l

lll
l

l
ll

lllll

l

l
l

ll
l

ll
l

l
ll

l
l

l

l
lllll

l
l

l
ll

l
l

l

l
l

l
lll

l

l
l

l
lll

ll
ll

lll

l

l

l
l

l

llll

ll

l

l
l

l

ll

l

l

l

l
l

l
l

ll
l
l

l
llll

ll
l

l
l

ll
l

l

l
l

l
l

ll
lll

l

l

ll

l

l

ll

llll
l

ll
l

ll

l
ll

ll
l

l
l

lll
ll

l

l
ll

l

ll

l
ll

l

ll

l

ll
lllll

l

llll
l

l

ll
llll

l
l

l
lll

l
l

l

l
l
l

l

l

ll
ll

llllll
l

l
l

l
l

l

l

lll

l

l

l
l

l
llllll

l

lll
l

l

l

lll

lll
lllll

l

l
l

l
l

l

l
lll

l
l

l

l

lll

l
l

ll

l
ll

l

ll

l

l

l

l
l

lll
l

llll

l

lllll
l

l

ll

ll
l

l

l

l
lll
l

ll

l

l

l

l

l

lllll
lll

ll

l
l

l

l

l

l

l

lll

l
l

ll

ll

l

l
ll

l

l

l
l
ll

l

l

lll
ll

l

l
lll

l

l
l

l

llll
l

lll
l

l

l

l

l
l

llll
l

l

l
llllll
l

lllll
ll

l

llll
ll

l
l

ll
l

l

llll
l

l
l

l

l

l

l
l

l

ll

lll
l

l

l

l
ll

llll
lll

l

l
ll
lll

l

l
lll

llll

ll
l

l

l

l

ll
l
l

lll

l

l

l
ll

l

l
l

ll

l
l

l

lll
lll

l

l
l

lll
l

lll
ll

ll
l

ll

l
ll

l
lllllll

l

l

l
l

l

llllll

l
ll

l
l

l

l

l
l

l
l

lll
l

l
l

ll
ll

l
l

lll

l

lll
ll

l
llll

l
l

l

l

l

l
l

l
ll

l

l

l
l

l
l

l
l

l

l
l

ll

l
l

l

l

l
lllll

l
l

l
l

l
l

l
ll

l

l
ll

lll
ll

ll
l
l

lll
l

l

l

ll
lll

l

l

l

l
lll
l

l

l
l

lll
l

l
l

l
l

llllll
l

l

ll
l

lllll

l

l

l
l

lll
ll

l
llll

l
l

l

l
l

ll
l

l
l

ll

lll
ll

lllllll
ll

l

ll
l

l

l

l
ll

l

ll
l

ll
l

l

l

l
ll

l
l

l

l
l

llll

l

lll

l
ll
l

l

ll

l
l

l

l

l

l

llll

l

l
ll

l
l

ll

ll

ll
l

l
l

l

l
l

l

l
l
l

l
l

ll

l

l

l

l
ll

l

l

ll

l
l

l

l
ll

l

l

l

ll

l

lll
lll

l

l

llll

l
l

llllllll

l

ll
ll

l

l

lll

l

ll

l

l
l
l

l

l

lll

l

l
l

l
l

l

l
l

ll
l

l
l

l
ll

ll
l

l

l

ll

l

l

l
l

l

l
l
ll

l

ll
l

l
l

ll

l
l

ll

l
l

lll
l

lll
l

lll
l

l

l

l
l

l
l

ll

l

l

l

l

ll
l

l
ll

l
l

l

l
ll

ll

ll

l

l
ll

l
l

llll
l

lll

l

ll
l

l
l

l
l

l
l

l
l

ll

l

llll
l

l
ll

l
l

l

l
l

lllllllllll

ll

ll

l

l

l
l

llll

l

l

l
l

l

l

l

l
l

ll

l

l

l
ll

lll
l

ll

ll

l

l
l

ll
l

l

l

l

l

l

ll

l

l

lll

l
l

l

l

l

ll

l
l

l

ll
l

l
l

ll

l

l

ll
l

ll
l

l

l

l

l
l

ll

l
ll

l

l

l

l

l
l

l

l

ll
l

ll

l
l

l

l

ll

l
l

l

l
ll

l
l

l
l

l
ll

l
l

ll

l

l

ll

l
l

l

llll

l
ll

ll

ll
l

l

l

l

l

l

l

lll
l

lll
l

l

l

l

l
l

l
ll
l

l
l

ll

l

l
l

l

l

ll
l

l
l

l
l

l

lll

l

l
lll

l

l

l
l

l

l

l

l

l

l

l
l

lll

l

l

l

ll

l

ll
l

ll

l

l

l

l
lll

l

l
l

ll

l

l

l
l

ll
ll

l
ll

llll

ll

l

l

l

l

ll
l

l

ll
lll

l

l

ll

l

l
ll

lll

l

l

ll
ll

l

lll
l

l
l

l
l

l
l

l

l

l
l

l

l

ll
l

l
l

l

lll
l

ll

l
ll

l

llll
ll

l

ll

l

l

l
ll

l

ll
lll

l

lll
ll
ll

l

ll
l

l
l

l
ll

l
lll

l

l

l

lll

l

l

l

ll
l

l

l

l

l
l

l

l

ll
ll

l

ll

l
ll

l
ll

l
l

lll
l

l

l
ll

l

l

ll

l

l

l
l

l
l

ll

lll
lll

l

lllllllll

l

ll

llll
l

l

l

ll
l

l
lll

ll

l

l

l
l

l

l

ll

l
l

l

l
llll

l

l

l

l

l
l

l
l

l

l
l

ll

l

l
l

l

l

l

l

l

ll

l

l

l

ll

ll
l

l

l

l

l

l

ll
l

l

l

l
l

l

l

ll

l

ll

l
l

l

l
l

l

l

l

l
l

l

ll

l
l

l

ll
ll
llll

l
l

l
l

l

l

lll

l

l

l

ll

l
l

ll

l
l

l
lll

lllll

ll
l

l
l

l
l

l

l
l

l
ll

l
llll
l

l
llll

l

ll
ll

l
lll

l

l

l

l

ll

l

l

l

l

l
llll

l

l

l
l

l

l

l
l

l

llll

l
l

l
llllll

ll

l
l

l

lll

l
l

l

l
ll l

l

lll
l

l
ll

l

l
llll ll

l

lllll

l

l
l

llll

ll

llllllll
l

l

l

lllllllll

l

lllll
l

l

l
lll
ll

lll

lll

l

l
ll

l

ll

l

ll
ll

ll

lll
l

l

l

l
llllll
l

ll

l

l
ll

lll
lllll

l

lllll

l

l

l

l
l

lll

l

ll
llllllll

l

ll

l

llll ll
ll

l

l

ll

ll
l

l

lllll

l

ll
l

l

ll
l

llllllllllll
ll

lllll

l

l

l

llll
l

l

l

lll
l

llll
l

l
l

l
llllllllll

l
ll

l

l
l

l

l

ll
llll
l

l
ll

ll
lllllll

llll
l

ll
l

ll

l
ll

l

l
l

ll
llllll

l

l

l
llllllll

ll
l

l

llll
ll

lll

lll
ll

l

lllll
l

l
ll

ll

lllll
lll

l
l

lll
l

lll

l

llll

l
l

l

l
lllllll

lll
ll

l
l

l
ll

lllllll
ll

ll
lll

lll ll
ll

ll
l

l

lll
llll

l
ll

l
ll

llllll
l

l
l

l
lllll

ll
ll

l
lll

l

l

l

l
l

lll
lll

l

lllllll
l

l

l

l
l

l
l

l

ll
l

l

l

llll
l

l

ll
l

l

llll
ll

l

l

ll

llll

l

l

l

l

lll

l

l

l
ll

ll
l

l

ll
ll

l

l
l

ll
l

llllll

l

lll

l
ll

l

ll

l
ll

lll

l

lll

l

l
l

l

l

l

l

l

l

l

l
l

ll

l

l
l

l

ll

ll
l

l
ll

l
l

lll

ll
l

l

l
l

ll

l
l

l

lll

l

ll

l

l

l
l

l
ll

ll

l
ll

l

l

ll

l

l
lll

l

ll

lll

l

l
l

l
l

ll
l

l

l
l

l

l
ll

l
l

l

lll
l

l
l

l
ll

l

l

l
l

l

l

ll

l

l

l
ll

l

l

ll

ll

ll

ll

l

l

l

l

l

l

l
lll

l

ll

l

llll

l

l

l
lll

l

ll

lll

ll

lll

l

l

l

l

ll
ll

ll

l

lll

l
l

l

l

l

l

l

lllll

l
l

lllllll

l

l

l

l

l

ll
l

l

llll

ll

l
ll

ll

lllll
lllllllll

l

l

l

ll
l

l
l

lllll
l

l

l

l

l
ll

l

l
ll

ll

l

l

l

lll
ll

l

lll

l

l
l

l
l

l

l

l

l

llll
l

l

l
ll

l
l

ll

l
l

l
l

l

l

l

l
l

l
ll
l

l

ll
l

l
ll

lll
l

l

l

l

l
lll

l
lll l
lllll

l

l

l

ll

l

ll

l

l
l

l
l

l
ll

l
ll

lll

ll

ll

l

l

ll
l

l

l

l

l

llll
lllll

l

ll

l

ll

l

lll
llllll

l
l

ll
ll

l

l

l

l

l
ll

l

l
l

ll

ll

ll

l

l
l

l

llll

l
l

lll
l

l
l

ll

l
l

l
l

l

l

l

l

lll
l

l

l ll

l

l
ll

l

ll

l

l

l

l

ll

l
l

l

ll

lll

l
l

l

l

l

lllll

l
l

l
l

l

ll

l
l

l

llll
lll

l

l

l

l

l

l

l

l
ll

l l
llll

llll

l

l

l

lll

ll

l

l

ll

l

lll
l

l

llll

l

l

l

ll

l

l

llll

l

l

lll

l

lll

l

ll

l
l

l

l

l
ll

l
l

l

l

ll

ll

lll

l

l

l
l

l

ll

l

l
l l

l

l

l
ll

l

l

l

l

l

lll

l

l
l

l

ll

l

l
l

l

ll
l

l

l

l

lll
l

ll
l

l
ll

l

llllllll

l

l

l

ll

l

lll

ll

lll

l

l

l

ll
l

ll
l

l

l
lll

ll

ll
l

l
l

l

l
l

ll

l

lll

l

l
l

l
l

l

l

l
l

l

lll

ll lll
ll

l
ll

l

llll
l

l
l

l

l
l

l

l

ll
l

l

l
ll

l

l

ll
ll

l

l

l

l
l

ll

ll

l

l

lll

l

l
l

ll
lll

l
l

lll

l

lllllll
l

l

ll

l

l

l

l

l
l

l
ll

llll l

lll

l
lllll

l
llll

l
l

ll

l

l

l

l
l

llll

l

ll
llllll

l

l
l

ll
l

l

l
l

l
l

l

l
l

l

l
l

ll
l

lll

l

l

l

ll l
ll
l

ll

l

l

ll
l

l
ll

ll

l

l ll

l
l

l

l

l

l
l

l

ll

l

l

ll

l

l

l
lll

l

ll

l

l
ll

l

lllll

l

l

l

l
lll

ll

l

l

ll ll

l

l

lll

llll
ll

l

llll ll
l

l

l

l

l
l

l

l

ll
l

ll

l

l

l
l

l
l

l

l
ll

l

l

ll

ll

l

l

l
ll

l

l

l

l
l

l

l

l

ll lll

l

l

l

ll
ll

ll

l

l

l

l

l

ll
l

l

l

l

l

l
l

l
ll

l

l

l
l

l

l

lll

l

l

ll

l

l
ll

l

ll

l

l l
llll

l

l
l

l
l

ll
l

l

ll

l

lllll

ll

l

l

llll
l

l

ll
l

ll
l

l l

ll

l
ll

l

l

l
l

l

l

l

l

l

l

l

lllllll llll
l

l
l
l

l

llll

l

l
l

lll

l
l

lll
l

l

ll
l

l

lll l

l

ll

l

l

lll

l

l

l

l

l
l

ll
l

l

l
l

l

l
l

llll

l

l
lll ll

ll

l

l

l

l
ll

l

ll

l

l
l

l

l

l
l

lll l
l

ll

lll

l

lll

ll

l

l

l

ll

lll

l

l

ll
l

l

ll
ll

l lll

l

ll

l

ll

l

ll
lll l

l

l
l

l

l

l

l

l

lll

ll

l
l

l

l

l
ll l

l

llll
lll ll
l

l l
l

ll

l

lll

l

l

l

llllll l

l

ll
l

ll

ll

l

l
llll

l

l

l

ll
l

l

l

l

l

l

ll

l

l l
llllll

l

l

l
l

l

l

l

ll

ll

l

ll

l

ll

ll

ll
l

l

l

lll

l

lllllllllll

l

llll

l

llll

l

l

l

ll
l

ll

l

l

l

l
l

l
ll

l

l

l

l

l

l

l

ll ll

l
l

l

l
ll

l
l

l

l

l

l

l

ll
l

l

l
l

l

l

l

l l
ll

l

l

ll
lllll

l

l

l

l

l
l

ll
l

l

l

l

l

l
l

l
ll

l

llllllllll

l

l

l

lll l

l

lll

l

l

l

l
l

l

l
l

llll ll llll ll
ll

l

l

ll
ll

l

ll

lll
l

l

l

l

l

lll

l

lll
ll

ll
l

l
l

l

lll

l

l
l

ll
ll

ll

lllll
l

l

l
ll
l

l
ll

lll

lll
ll

l

lll
ll
l

l
ll

l
l l

ll

l

l
lll

l

ll

l

l

l

lll

l

l

l
l

ll

ll

l
l

l

l

l
l

lll

ll

llll

ll

l
l

llll

l

l

l

l
l

lll l
l

l

l

l

l

l

ll

l

l

l

llll

l

ll

l

l
ll

l
ll

ll l

l

llll

l

llll
l

l
l

l
ll

l

l

llll

l

lll
llll

l

ll
l ll

l

l

l

l

l
ll

ll

l

l ll l
lll

l

l

l
lll

l
ll

l

l
ll

l
l

l
l

ll

l llll

l

lll

l

l
l

lll l
l

l

l
l

l

l
l

ll

l

l

l

l

ll

l

llll

ll

l
l

ll

ll

l
l

l

lll
l

l

lll
l

ll ll

l

lll

l

l

l

l
ll

ll

l
l

ll
l l

l

l

l

l
l

l

lll lllll

l

ll l
l

llll
ll

ll
l

ll

ll
ll

ll

ll

l
l

l

l

ll
l

lll

l

lll

l

ll

l

ll
l

ll

ll

ll
lll

l
l

lll
lllll ll lllllll

l
lllllllllll llllll

l
ll lll lll ll

l
lll

ll
lll l

llll
ll

lll l
lll lll
l

llll lll l lll
l lll
l

l
l

lllllll
l

llll llll
lll llllllll ll lllll

l l
lll ll ll ll llll
l

l
l

lll
llllll l
l

l llll
l l

l
l

l
ll

l l
ll

lllll
l

llllllllllllllll ll l
l

lll
l

l lll l
ll l

l
l

l
l llllll lllllllll lllll llll

l
l llll llll

l

lll
ll

lll lllll llllllllllllll
l

llllllllllllll llllllll
l ll

l

l
lllll ll

lll
ll

l
lll

l ll l
l

l llll lll llll ll
l

ll
l

ll
l

llll
l

ll lllll
lllllll

lllll ll
l

llllllll llll
l

llll
l

llll
l

lll
l

l l
l

l
l

l ll llllll ll l

l
ll
ll

ll
l

lll
lll llll

l

lll llll
l

lllll

l

l
l

l llllll lllllll
l

llll
l

l
ll

llllllll
l

l

lll l
llllllll

l

l

l
lllllllllll

l
llllllll

l
l

ll lllll
lll l

l
llll llllll ll lllll

llllllllllllll
l

ll
l

lllll lllll l
l

ll
l

l llllll
l

l
lll l
l

l lllllll
llllllll

l
ll ll

l
llll

l
ll lll l

l
l ll

l
ll

l l
l

llllll
llll llll

l
lll

l
l

l
l

llll llll
lllll

l

lllllllll
l

l
lll llll l lll llllllll ll

ll llll
lllll l

l

llll
l llllllllll lll ll lll lllllll
llll

ll
l

l l llll l
l

llllllllllll ll llll l
lllll ll llll lll lllll lll llllll

l
llll ll llll ll

l l lllllll ll ll ll
l

ll l llll
l

ll l
l

l
l

l
lllll

ll
l

l
llll ll l

llllllll
llll lll l

lll lll
llll llllllll l
l lll llllll

l
llll l

lllllllllllllll lll lll
l

ll l
l lll ll lll

ll l
l ll l
lll l
l

llll l l
l

ll l
ll l ll
l llll

lllll
l

lllll lllll
lll llll lll

l
l ll

l ll l
l ll llll lllllllll llll l ll llllllll l
l lll lll llll llll lllll ll ll l ll ll
l

lll ll llll l lllll llll lll
ll llll

l
llllll lll llllll l

l
ll

ll lll llllll llll lll
l

l
l

llllll
l

l lll
l ll lll lllll
l

l
ll

llll
l ll
ll

lll l
llll llllll

Fig. 4.3 Example of the temperature cooling (left) and simulated annealing search (right) for
sphere and D D 2

In this execution, the initial solution was improved $3,467 (bag prices) and 20.49
(sphere). For the last task execution, Fig. 4.3 shows the evolution of the temperature
values (left) and points searched (right). While the initial point is within the
Œ�5:2; 5:2� range, the default and unbounded Gaussian Markov change function
searches for several solutions outside the initial range. However, as the search
proceeds, more solutions tend to converge to the origin point, which is the optimum.

4.4 Tabu Search

Tabu search was created by Glover (1986) and uses the concept of “memory” to
force the search into new areas. The algorithm is a variation of the hill climbing
method that includes in a tabu list of length L, which stores the most recent solutions
that become “tabu” and thus cannot be used when selecting a new solution. The
intention is to keep a short-term memory of recent changes, preventing future moves
from deleting these changes (Brownlee 2011). Similarly to the hill climbing method,
the search of solutions within the neighborhood of the current solution (function
change) can be deterministic, including the entire neighborhood, or stochastic (e.g.,
small random perturbation). Also, the tabu search algorithm is deterministic, except
if a stochastic change is adopted (Michalewicz et al. 2007). Hence, this method is
also centered within the deterministic/stochastic factor of analysis in Fig. 1.2.

There are extensions of the original tabu search method. Tabu search was devised
for discrete spaces and combinatorial problems (e.g., traveling salesman problem).
However, the method can be extended to work with real valued points if a similarity
function is used to check if a solution is very close to a member of the tabu list
(Luke 2012). Other extensions to the original method include adding other types

54 4 Local Search

Algorithm 4 Tabu search
1: Inputs: S; f; C F S is the initial solution, f is the evaluation function, C contains control

parameters (maxit , L and N)
2: maxit get_maxit.C / F maximum number of iterations
3: L get_L.C / F length of the tabu list
4: N get_N.C / F number of neighbor configurations to check at each iteration
5: List fg F tabu list (first in, first-out queue)
6: i 0 F i is the number of iterations of the method
7: while i < maxit do F maxit is the termination criterion
8: for j D 1! N do F cycle j from 1 to N

9: S 0 change.S; C / F new solution
10: CList fg F candidate list
11: if S 0 … List then CList CList [S 0 F add S 0 into CList

12: end if
13: end for
14: S 0 best.CList; f / F get best candidate solution
15: if isbest.S 0; S; f / then F if S 0 is better than S

16: List List [S 0 F enqueue S 0 into List

17: if length.List/ > L then dequeue.L/ F remove oldest element
18: end if
19: S S 0 F set S as the best solution S 0

20: end if
21: i i C 1

22: end while
23: Output: S F the best solution

of memory structures, such as: intermediate-term, to focus the search in promising
areas (intensification phase); and long-term, to promote a wider exploration of the
search space (diversification phase). More details can be found in Glover (1990).

Algorithm 4 presents a simple implementation of tabu search, in an adaptation of
the pseudo-code presented in Brownlee (2011). The algorithm combines a steepest
ascent hill climbing search with a short tabu memory and includes three control
parameters: maxit—the maximum number of iterations; L—the length of the tabu
list; and N —the number of neighborhood solutions searched at each iteration.

In this section, the tabuSearch function is adopted (as implemented in the
package under the same name). This function only works with binary strings,
using a stochastic generation of new solutions and assuming a maximization goal.
Also, it implements a three memory scheme, under the sequence of stages: pre-
liminary search (short-term), intensification (intermediate-term), and diversification
(long-term). Some relevant arguments are:

• size—length of the binary solution (LS);
• iters—maximum number of iterations (maxit) during the preliminary stage;
• objFunc—evaluation function (f) to be maximized;
• config—initial solution (S);
• neigh—number of neighbor configurations (N) searched at each iteration;

4.4 Tabu Search 55

• listSize—length of the tabu list (L);
• nRestarts—maximum number of restarts in the intensification stage; and
• repeatAll—number of times to repeat the search.

The tabuSearch function returns a list with elements such as: $configKeep—
matrix with stored solutions; and $eUtilityKeep—vector with the respective
evaluations.

To demonstrate this method, file binary-tabu.R optimizes the binary tasks
of Sect. 1.7:

binary-tabu.R file
library(tabuSearch) # load tabuSearch package

tabu search for sum of bits:
sumbin=function(x) (sum(x)) # sum of bits
D=8 # dimension
s=rep(0,D) # c(0,0,0,0,...)
s=tabuSearch(D,iters=2,objFunc=sumbin,config=s,neigh=2,

listSize=4,nRestarts=1)
b=which.max(s$eUtilityKeep) # best index
cat("best:",s$configKeep[b,],"f:",s$eUtilityKeep[b],"\n")

tabu search for max sin:
intbin=function(x) sum(2^(which(rev(x==1))-1))
maxsin=function(x) # max sin (explained in Chapter 3)
{ D=length(x);x=intbin(x); return(sin(pi*(as.numeric(x))/(2

^D)))
}

D=8
s=rep(0,D) # c(0,0,0,0,...)
s=tabuSearch(D,iters=2,objFunc=maxsin,config=s,neigh=2,

listSize=4,nRestarts=1)
b=which.max(s$eUtilityKeep) # best index
cat("best:",s$configKeep[b,],"f:",s$eUtilityKeep[b],"\n")

An example of file binary-tabu.R execution is:

> source("binary-tabu.R")
best: 0 1 1 1 0 1 1 1 f: 6
best: 1 0 0 1 0 1 1 0 f: 0.9637761

While few iterations were used, the method optimized solutions close to the
optimum values (f D 8 for sum of bits and f D 1 for max sin).

The tabu search is also demonstrated for the bag prices integer task (D D 5).
Given that tabuSearch() imposes some restrictions, adaptations are needed.
The most relevant is the use of a binary representation, with ten digits per
integer value (to cover the {$1,$2,: : :,$1,000} range). Also, since the associated
search space includes infeasible solutions, a simply death penalty scheme is used
(Sect. 1.5), where f D �1 if any price is above $1,000. Finally, given that
tabuSearch() does not include extra arguments to be passed to the evaluation

56 4 Local Search

function, the arguments D and Dim need to be explicitly defined before tabu search
method is executed. The adapted R code (file bag-tabu.R) is:

bag-tabu.R file
library(tabuSearch) # load tabuSearch package
source("functions.R") # load the profit function

tabu search for bag prices:
D=5 # dimension (number of prices)
MaxPrice=1000
Dim=ceiling(log(MaxPrice,2)) # size of each price (=10)
size=D*Dim # total number of bits (=50)
s=sample(0:1,size,replace=TRUE) # initial search

intbin=function(x) # convert binary to integer
{ sum(2^(which(rev(x==1))-1)) } # explained in Chapter 3
bintbin=function(x) # convert binary to D prices
{ # note: D and Dim need to be set outside this function
s=vector(length=D)
for(i in 1:D) # convert x into s:
{ ini=(i-1)*Dim+1;end=ini+Dim-1

s[i]=intbin(x[ini:end])
}
return(s)

}
bprofit=function(x) # profit for binary x
{ s=bintbin(x)
if(sum(s>MaxPrice)>0) f=-Inf # death penalty
else f=profit(s)
return(f)

}

cat("initial:",bintbin(s),"f:",bprofit(s),"\n")
s=tabuSearch(size,iters=100,objFunc=bprofit,config=s,neigh=4,

listSize=16,nRestarts=1)
b=which.max(s$eUtilityKeep) # best index
cat("best:",bintbin(s$configKeep[b,]),"f:",s$eUtilityKeep[b],
"\n")

This code introduces the ceiling() R function that returns the closest upper
integer. An execution example of file bag-tabu.R is:

> source("bag-tabu.R")
initial: 621 1005 880 884 435 f: -Inf
best: 419 428 442 425 382 f: 43050

In this case, the tabu search managed to improve an infeasible initial search point
into a solution that is only 2 % far from the optimum value (f D 43;899).

4.5 Comparison of Local Search Methods 57

4.5 Comparison of Local Search Methods

The comparison of optimization methods is not a trivial task. The no free lunch
theorem (Wolpert and Macready 1997) states that all search methods have a similar
global performance when compared over all possible functions. However, the set of
all functions includes random and deceptive ones, which often are not interesting
to be optimized. A constructive response to the theorem is to define a subset of
“searchable” functions where the theorem does not hold, comparing the average
performance of a several algorithms on this subset (Mendes 2004). Yet, even if
an interesting subset of functions and methods is selected, there are other relevant
issues for a robust comparison: how to tune the control parameters of a method
(e.g., T of simulated annealing) and which performance metrics and statistical tests
should be adopted.

Hence, rather than presenting a complete comparison, this section presents an
R code example of how optimization methods can be compared, assuming some
reasonable assumptions (if needed, these can be changed by the readers). The
example uses one task, rastrigin benchmark with D D 20 (which is the most
difficult real value task from Sect. 1.7) and compares three methods: Monte Carlo
(Sect. 3.4), hill climbing (Sect. 4.2), and simulated annealing (Sect. 4.3). To avoid
any bias towards a method, the same change function is used for hill climbing and
simulated annealing strategies and the default optim values (T D 10, tmax D 10)
are adopted for the last search strategy. The same maximum number of iterations
(maxit D 10;000) is used for all methods. Rather than comparing just the final best
value, the comparison is made throughout the search execution. Some measures of
search execution can be deceptive, such as time elapsed, which might be dependent
on the processor workload, or number of iterations, whose computational effort
depends on the type of search. Thus, the best value is stored for each evaluation
function (from 1 to 10,000), as sequentially called by the method. Finally, a total of
50 runs are executed for each method, with the initial solutions randomly generated
within the range Œ�5:2; 5:2�. To aggregate the results, the average and respective
t-student 95 % confidence intervals curves are computed for the best values. The
comparison code outputs a PDF result file (file compare.R):

compare.R file

source("hill.R") # get hchange
source("blind.R") # get fsearch
source("montecarlo.R") # get mcsearch
library(rminer) # get meanint

comparison setup:
crastrigin=function(x)
{ f=10*length(x)+sum(x

^2-10*cos(2*pi*x))
global assignment code: <<-
EV<<-EV+1 # increase evaluations
if(f<BEST) BEST<<-f

58 4 Local Search

if(EV<=MAXIT) F[EV]<<-BEST
return(f)

}
Runs=50; D=20; MAXIT=10000
lower=rep(-5.2,D);upper=rep(5.2,D)
rchange1=function(par,lower,upper) # change for hclimbing
{ hchange(par,lower=lower,upper=upper,rnorm,

mean=0,sd=0.5,round=FALSE) }
rchange2=function(par) # change for optim
{ hchange(par,lower=lower,upper=upper,rnorm,

mean=0,sd=0.5,round=FALSE) }
CHILL=list(maxit=MAXIT,REPORT=0)
CSANN=list(maxit=MAXIT,temp=10,trace=FALSE)
Methods=c("monte carlo","hill climbing","simulated annealing")

run all optimizations and store results:
RES=vector("list",length(Methods)) # all results
for(m in 1:length(Methods))

RES[[m]]=matrix(nrow=MAXIT,ncol=Runs)
for(R in 1:Runs) # cycle all runs
{ s=runif(D,-5.2,5.2) # initial search point
EV=0; BEST=Inf; F=rep(NA,MAXIT) # reset these vars.
monte carlo:
mcsearch(MAXIT,lower=lower,upper=upper,FUN=crastrigin)
RES[[1]][,R]=F
hill climbing:
EV=0; BEST=Inf; F=rep(NA,MAXIT)
hclimbing(s,crastrigin,change=rchange1,lower=lower,

upper=upper,control=CHILL,type="min")
RES[[2]][,R]=F
SANN:
EV=0; BEST=Inf; F=rep(NA,MAXIT)
optim(s,crastrigin,method="SANN",gr=rchange2,control=CSANN)
RES[[3]][,R]=F

}

aggregate (average and confidence interval) results:
AV=matrix(nrow=MAXIT,ncol=length(Methods))
CI=AV
for(m in 1:length(Methods))
{
for(i in 1:MAXIT)
{
mi=meanint(RES[[m]][i,])
AV[i,m]=mi$mean;CI[i,m]=mi$int
}

}

show comparative PDF graph:

plot a nice confidence interval bar:
confbar=function(x,ylower,yupper,K=100)
{ segments(x-K,yupper,x+K)

4.5 Comparison of Local Search Methods 59

segments(x-K,ylower,x+K)
segments(g2,ylower,g2,yupper)

}

pdf("comp-rastrigin.pdf",width=5,height=5)
par(mar=c(4.0,4.0,0.1,0.6)) # reduce default plot margin
MIN=min(AV-CI);MAX=max(AV+CI)
10.000 are too much points, thus two grids are used
to improve clarity:
g1=seq(1,MAXIT,length.out=1000) # grid for lines
g2=seq(1,MAXIT,length.out=11) # grid for confbar
plot(g1,AV[g1,3],ylim=c(MIN,MAX),type="l",lwd=2,

ylab="average best",xlab="number of evaluations")
confbar(g2,AV[g2,3]-CI[g2,3],AV[g2,3]+CI[g2,3])
lines(g1,AV[g1,2],lwd=2,lty=2)
confbar(g2,AV[g2,2]-CI[g2,2],AV[g2,2]+CI[g2,2])
lines(g1,AV[g1,1],lwd=2,lty=3)
confbar(g2,AV[g2,1]-CI[g2,1],AV[g2,1]+CI[g2,1])
legend("topright",legend=rev(Methods),lwd=2,lty=1:3)
dev.off() # close the PDF device

Given that some optimization functions (e.g., optim) are restrictive in terms
of the parameters that can be used as inputs, the evaluation function is adapted to
perform global assignments (operator <<-, Sect. 2.3) to the number of evaluations
(EV), best value (BEST), and vector of best function values (F). The results are
stored in a vector list of size 3, each element with a matrix maxit � runs. Two
similar change functions are defined, since optim does not allow the definition
of additional arguments to be passed to gr. The code introduces some new R
functions:

• meanint (from package rminer)—computes the mean and t-student confi-
dence intervals;

• segments—draws a segment;
• par—sets graphical parameters used by plot; and
• lines—joints points into line segments.

The result execution of file compare.R is presented in Fig. 4.4. Initially, all
methods present a fast and similar convergence. However, after around 1,000
evaluations, the hill climbing and simulated annealing methods start to outperform
the random search (Monte Carlo). The confidence interval bars show that after
around 4,000 evaluations, the local search methods are statistically better when
compared with Monte Carlo. In this experiment, simulated annealing produces only
a slight best average result and the differences are not statistically significant when
compared with hill climbing (since confidence intervals overlap).

60 4 Local Search

0 2000 4000 6000 8000 10000

20
0

25
0

30
0

35
0

number of evaluations

av
er

ag
e

be
st

simulated annealing
hill climbing
monte carlo

Fig. 4.4 Local search comparison example for the rastrigin task (D D 20)

4.6 Command Summary

ceiling() returns the closest upper integer

hchange() slight random change of a vector (chapter file "hill.R")

hclimbing() standard hill climbing search (chapter file "hill.R")

ifelse() conditional element selection

lines() joints points into line segments

meanint computes the mean and t-student confidence intervals (package
rminer)

optim() general-purpose optimization (includes simulated annealing)

par() set or query graphical parameters used by plot()

rminer package for simpler use of data mining (classification and regres-
sion) methods

segments draws a segment line

tabuSearch package for tabu search

tabuSearch() tabu search for binary string maximization (package
tabuSearch)

4.7 Exercises 61

4.7 Exercises

4.1. Adapt the function hclimbing function to accept an additional control
parameter (N). When N D 0, the function should execute the standard hill
climbing, while when N > 0, the function should implement the steepest ascent
hill climbing method. This last variant works by searching first N neighbor solutions
within each iteration, in order to select the best new solution to be compared with
current search point.

4.2. Explore the optimization of the binary max sin task with a higher dimension
(D D 16), under hill climbing, simulated annealing, and tabu search methods. Use
the zero vector as the starting point and a maximum of 20 iterations. Show the
optimized solutions and evaluation values.

4.3. Execute the optimization of the rastrigin function (D D 8) with the
tabuSearch function. Adopt a binary representation such that each dimension
value is encoded into 8 bits, denoting any of the 256 regular levels within the
range Œ�5:2; 5:2�. Use the control parameters: maxit D 500, N D 8, L D 8

and nRestarts=1 and a randomly generated initial point.

Chapter 5
Population Based Search

5.1 Introduction

In previous chapter, several local based search methods were presented, such as hill
climbing, simulated annealing, and tabu search. All these methods are single-state,
thus operating their effort around the neighborhood of a current solution. This type
of search is simple and quite often efficient (Michalewicz et al. 2006). However,
there is another interesting class of search methods, known as population based
search, that use a pool of candidate solutions rather than a single search point. Thus,
population based methods tend to require more computation when compared with
simpler local methods, although they tend to work better as global optimization
methods, quickly finding interesting regions of the search space (Michalewicz and
Fogel 2004).

As shown in Fig. 5.1, population based methods tend to explore more distinct
regions of the search space, when compared with single-state methods. As conse-
quence, more diversity can be reached in terms of setting new solutions, which can
be created not only by slightly changing each individual search point but also by
combining attributes related with two (or more) search points.

The main difference between population based methods is set in terms of:
how solutions are represented and what attributes are stored for each search
point; how new solutions are created; and how the best population individuals
are selected. Most population based methods are naturally inspired (Luke 2012).
Natural phenomena such as genetics, natural selection, and collective behavior
of animals have led to optimization techniques such as genetic and evolutionary
algorithms, genetic programming, estimation of distribution, differential evolution,
and particle swarm optimization. This chapter describes all these methods and
examples of their applications using the R tool.

© Springer International Publishing Switzerland 2014
P. Cortez, Modern Optimization with R, Use R!, DOI 10.1007/978-3-319-08263-9__5

63

64 5 Population Based Search

Fig. 5.1 Example of a
population based search
strategy

solution

Search space

initial
population

information
exchange

5.2 Genetic and Evolutionary Algorithms

Evolutionary computation denotes several optimization algorithms inspired in the
natural selection phenomenon and that include a population of competing solutions.
Although it is not always clearly defined, the distinction among these methods is
mostly based on how to represent a solution and how new solutions are created.
Genetic algorithms were proposed by Holland (1975). The original method worked
only on binary representations and adopted massively the crossover operator for
generating new solutions. More recently, the term evolutionary algorithm was
adopted to address genetic algorithm variants that include real value representations
and that adopt flexible genetic operators, ranging from heavy use of crossover to
only mutation changes (Michalewicz 1996).

There is a biological terminology associated with evolutionary computation
methods (Luke 2012). For instance, a candidate solution is often termed indi-
vidual, while population denotes a pool of individuals. The genotype, genome,
or chromosome denotes the individual data structure representation. A gene is a
value position in such representation and an allele is a particular value for a gene.
The evaluation function is also known as fitness and phenotype represents how the
individual operates during fitness assessment. The creation of new solutions is called
breeding and occurs due to the application of genetic operators, such as crossover
and mutation. Crossover involves selecting two or more parent solutions in order
to generate children, while mutation often performs a slight change to a single
individual.

This book adopts the genetic/evolutionary algorithm as implemented by the
genalg package (Lucasius and Kateman 1993). The package handles minimiza-
tion tasks and contains two relevant functions: rbga.bin, for binary chromo-
somes; and rbga, for real value representations. The genalg main pseudo-code
for rbga.bin() and rbga() is presented in Algorithm 5 and is detailed in the
next paragraphs.

5.2 Genetic and Evolutionary Algorithms 65

Algorithm 5 Genetic/evolutionary algorithm as implemented by the genalg
package
1: Inputs: f; C F f is the evaluation (fitness) function, C includes control parameters
2: P ini t ialization.C / F random initial population
3: NP get_populat ion_size.C / F population size
4: E get_eli t ism.C / F number of best individuals kept (elitism)
5: i 0 F i is the number of iterations of the method
6: while i < maxit do
7: FP f .P / F evaluate current population
8: PE best.P; FP ; E/ F set the elitism population (lowest E fitness values)
9: P arents selectparents.P; FP ; NP �E/ F select NP �E parents from current

population
10: C hildren crossover.P arents; C / F create NP �E children solutions
11: C hildren mutat ion.C hildren; maxit; i/ F apply the mutation operator to the

children
12: P E [C hildren F set the next population
13: i i C 1

14: end while
15: Output: P F last population

The initialization function creates a random population of NP individuals
(argument popSize), under a particular distribution (uniform or other). Each
individual contains a fixed length chromosome (with LS genes), defined by size
for rbga.bin or by the length of the lower bound values (stringMin) for rbga.
For rbga, the initial values are randomly generated within the lower (stringMin)
and upper (stringMax) bounds. The optional argument suggestions can
be used to include a priori knowledge, by defining an explicit initial matrix
with up to NP solutions. The function rbga.bin() includes also the argument
zeroToOneRatio that denotes the probability for choosing a zero for mutations
and population initialization. The ideal number of individuals (NP , argument
popSize) is problem dependent. Often, this value is set taking into account
the chromosome length (LS), computational effort and, preliminary experiments.
Common population size values are NP 2 f20; 50; 100; 200; 500; 1;000; 2;000g.

The algorithm runs for maxit generations (argument iters). If an elitism
scheme is adopted (E > 0, value set by argument elitism), then the best E

individuals from the current population always pass to the next generation (the
default is elitism=20 % of the population size). The remaining next population
individuals are created by applying a crossover and then a mutation. The pseudo
selectparents function aims at the selection of NP � E parents from the current
population, in order to apply the crossover operator. The rbga algorithm performs
an uniform random choice of parents, while rbga.bin executes a probabilistic
selection of the fittest individuals. This selection works by ranking first the current
population (according to the fitness values) and then performing a random selection
of parents according to a density normal distribution. The respective R code
for generating such probabilities is dnorm(1:popSize, mean = 0, sd =
(popSize/3)). For instance, if NP D 4, then the probabilities for choosing

66 5 Population Based Search

cutting position

children

parents

mutation position

1 0 1 0 0 1 1 1 0 1 0 1 1 1 1 0

1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 1

1 0 1 0 0 1 1 1

1 0 1 1 0 1 1 1

Fig. 5.2 Example of binary one-point crossover (left) and mutation (right) operators

parents from the ranked population are .0:23; 0:1; 0:02; 0:0/, where 0.23 denotes the
probability for the best individual. It should be noted that this probabilistic selection
is also known as roulette wheel selection (Goldberg and Deb 1991). There are other
selection schemes, such as tournament selection, which is explained in Sect. 6.4.

To create new individuals, both rbga and rbga.bin adopt the same one-
point crossover, which was originally proposed in Holland (1975). The original
one-point operator works by first selecting two parents and a random cutting
position and then creating two children, each with distinct portions of the parents, as
exemplified in the left of Fig. 5.2. As a specific genalg package implementation,
only the first one-point crossover child is inserted into the new population and thus
NP � E crossover operations are executed (Sect. 7.2 shows an implementation that
inserts the two children generated from a crossover). Next, a mutation operator
is executed over the children, where each gene can be changed with a small
probability (set by mutationChange). By default, mutationChange is set to
1/(size+1). Once a gene is mutated, the new value is set differently according
to the chromosome representation type. In the binary version, the new bit value
is randomly set taking into account the zeroToOneRatio value. The right of
Fig. 5.2 shows an example of a binary bit mutation. Mutated real values are obtained
by first computing g0 D 0:67 � rd � df � Rg , where rd 2 f�1; 1g is a random
direction, df D .maxit � i/=maxit is a dampening factor, and Rg D max .g/ �
min .g/ is the range of the gene (e.g., max .g/ denotes the upper bound for g, as
set by StringMax). If g0 lies outside the lower (StringMin) or upper bounds
(StringMax), then g0 D min .g/CU .0; 1/�Rg . More details can be checked by
accessing the rbga package source code (> getAnywhere(rbga.bin) and

> getAnywhere(rbga)).
The rbga.bin and rba functions include four additional parameters:

• monitorFunc—monitoring function (e.g., could be used to compute useful
statistics, such as population diversity measures), applied after each generation;

• evalFunc—evaluation (or fitness) function;
• showSettings—if TRUE, then the genetic algorithm parameters are shown

(e.g., NP); and
• verbose—if TRUE, then more text about the search evolution is displayed.

5.2 Genetic and Evolutionary Algorithms 67

The result of executing rbga.bin and rba is a list with components such as:
$population—last population; $evaluations—last fitness values;
$best—best value per generation; and $mean—mean fitness value per genera-
tion. The genalg package also includes functions for plotting (plot.rbga) and
summarizing (summary.rbga) results. These functions adopt the useful R feature
of S3 scheme of method dispatching, meaning that if obj is the object returned by
rbga.bin or rbga, then the simpler call of plot(obj) (or summary(obj))
will execute plot.rbga (or summary.rbga).

Given that the help(rbga.bin) already provides an example with the sum of
bits task, the demonstration code (file bag-genalg.R) for the genetic algorithm
explores the bag prices (D D 5) problem of Sect. 1.7 (the code was adapted from
the example given for the tabu search in Sect. 4.5):

bag-genalg.R file
library(genalg) # load genalg package
source("functions.R") # load the profit function

genetic algorithm search for bag prices:
D=5 # dimension (number of prices)
MaxPrice=1000
Dim=ceiling(log(MaxPrice,2)) # size of each price (=10)
size=D*Dim # total number of bits (=50)
intbin=function(x) # convert binary to integer
{ sum(2^(which(rev(x==1))-1)) } # explained in Chapter 3
bintbin=function(x) # convert binary to D prices
{ # note: D and Dim need to be set outside this function
s=vector(length=D)
for(i in 1:D) # convert x into s:
{ ini=(i-1)*Dim+1;end=ini+Dim-1

s[i]=intbin(x[ini:end])
}
return(s)

}
bprofit=function(x) # profit for binary x
{ s=bintbin(x)
s=ifelse(s>MaxPrice,MaxPrice,s) # repair!
f=-profit(s) # minimization task!
return(f)

}
genetic algorithm execution:
G=rbga.bin(size=size,popSize=50,iters=100,zeroToOneRatio=1,

evalFunc=bprofit,elitism=1)
show results:
b=which.min(G$evaluations) # best individual
cat("best:",bintbin(G$population[b,]),"f:",-G$evaluations[b],

"\n")
pdf("genalg1.pdf") # personalized plot of G results
plot(-G$best,type="l",lwd=2,ylab="profit",xlab="generations")
lines(-G$mean,lty=2,lwd=2)
legend("bottomright",c("best","mean"),lty=1:2,lwd=2)
dev.off()
summary(G,echo=TRUE) # same as summary.rbga

68 5 Population Based Search

Similarly to the tabu search example, 10 binary digits are used to encode each price.
The evaluation function (bprofit) was adapted with two changes. First, a repair
strategy was adopted for handling infeasible prices, where high prices are limited
into the MaxPrice upper bound. Second, the profit function is multiplied
by �1, since genalg only handles minimization tasks. The last code lines show
results in terms of the best solution and summary of the genetic algorithm execution.
Also, the code creates a plot showing the evolution of the best and mean profit
values. An example of executing file bag-genalg.R is:

> source("bag-genalg.R")
best: 427 431 425 355 447 f: 43671
GA Settings
Type = binary chromosome
Population size = 50
Number of Generations = 100
Elitism = 1
Mutation Chance = 0.0196078431372549

Search Domain
Var 1 = [,]
Var 0 = [,]

GA Results
Best Solution : 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1

0 1 0 1 0 0 1 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1

Using 100 generations, the genetic algorithm improved the initial population
(randomly set) best profit from $36,745 to $43,671, with the best fitness value being
very close to the optimum (profit of $43,899). Figure 5.3 shows the best and mean
profit values during the 100 generations.

The rbga demonstration code is related with the sphere (D D 2) task (file
sphere-genalg.R):

sphere-genalg.R file
library(genalg) # load genalg

evolutionary algorithm for sphere:
sphere=function(x) sum(x^2)
D=2
monitor=function(obj)
{ if(i==1)

{ plot(obj$population,xlim=c(-5.2,5.2),ylim=c(-5.2,5.2),
xlab="x1",ylab="x2",type="p",pch=16,
col=gray(1-i/maxit))

}
else if(i%%K==0) points(obj$population,pch=16,

col=gray(1-i/maxit))
i<<-i+1 # global update

}

maxit=100
K=5 # store population values every K generations
i=1 # initial generation

5.2 Genetic and Evolutionary Algorithms 69

0 20 40 60 80 100

37
00

0
38

00
0

39
00

0
40

00
0

41
00

0
42

00
0

43
00

0

generations

pr
of

it

best
mean

Fig. 5.3 Example of evolution of a genetic algorithm for task bag prices

evolutionary algorithm execution:
pdf("genalg2.pdf",width=5,height=5)
set.seed(12345) # set for replicability purposes
E=rbga(rep(-5.2,D),rep(5.2,D),popSize=5,iters=maxit,

monitorFunc=monitor,evalFunc=sphere)
b=which.min(E$evaluations) # best individual
cat("best:",E$population[b,],"f:",E$evaluations[b],"\n")
dev.off()

In this example, the monitor argument is used to plot the population of solutions
every K generations, using a coloring scheme that ranges from light gray (initial
population) to dark (last generation). This gradient coloring is achieved using the
gray() R function, which creates gray colors between 1 (white) and 0 (black).
The use of the set.seed command (setting the R random seed) is adopted here
only for reproducibility purposes, i.e. readers who execute this code should get the
same results. The execution of file sphere-genalg.R is:

> source("sphere-genalg.R")
best: 0.05639766 0.009093091 f: 0.00326338

70 5 Population Based Search

Fig. 5.4 Example of an
evolutionary algorithm search
for sphere (D D 2)

−4 −2 0 2 4

−
4

−
2

0
2

4
x1

x2

Although a very small population is used (NP D 5, minimum value accepted by
rbga), the evolved solution of s D .0:009; 0:003/ and f D 0:056 is very close to
the optimum (f D 0). Figure 5.4 presents the result of the plot, showing that darker
points converge towards the optimum point (origin).

5.3 Differential Evolution

Differential evolution is a global search strategy that tends to work well for
continuous numerical optimization and that was proposed in Storn and Price (1997).
Similarly to genetic and evolutionary algorithms, the method evolves a population of
solutions, where each solution is made of a string of real values. The main difference
when compared with evolutionary algorithms is that differential evolution uses
arithmetic operators to generate new solutions, instead of the classical crossover and
mutation operators. The differential mutation operators are based on vector addition
and subtraction, thus only working in metric spaces (e.g., boolean, integer or real
values) (Luke 2012).

This chapter adopts the differential evolution algorithm as implemented by the
DEoptim package (Mullen et al. 2011), which performs a minimization goal. The
respective pseudo-code is presented in Algorithm 6.

The classical differential mutation starts by first choosing three individuals (s1,
s2, and s3) from the population. In contrast with genetic algorithms, these three
individuals are randomly selected and selection only occurs when replacing mutated
individuals in the population (as shown in Algorithm 6). A trial mutant is created
using (Mullen et al. 2011): sm;j D s1;j C F � .x2;j � x3;j /, where F 2 Œ0; 2� is a
positive scaling factor, often less than 1.0, and j denotes the j -th parameter of the
representation of the solution. If the trial mutant values violate the upper or lower
bounds, then sm;j is reseted using sm;j D max .sj /�U .0; 1/.max .sj /�min.sj //,

5.3 Differential Evolution 71

Algorithm 6 Differential evolution algorithm as implemented by the DEoptim
package
1: Inputs: f; C F f is the evaluation (fitness) function, C includes control parameters
2: P ini t ialization.C / F set initial population
3: B best.P; f / F best solution of the initial population
4: i 0 F i is the number of iterations of the method
5: while not termination_cri teria.P; f; C; i/ do F DEoptim uses up to three termination

criteria
6: for each individual s 2 P do F cycle all population individuals
7: s0 mutat ion.P; C / F differential mutation, uses parameters F and CR

8: if f .s0/ < f .s/ then P replace.P; s; s0/ F replace s by s0 in the population
9: end if

10: if f .s0/ < f .B/ then B s0 F minimization goal
11: end if
12: end for
13: i i C 1

14: end while
15: Output: B; P F best solution and last population

if sm;j > max .sj /, or sm;j D min .sj /C U .0; 1/.max .sj / � min .sj //, if sm;j <

min .sj /, where max .sj / and min .sj / denote the upper and lower limits for the
j -th parameter of the solution. The first trial mutant value (chosen at random) is
always computed. Then, new mutations are generated until all string values have
been mutated (total of LS mutations) or if r > CR, where r D U .0; 1/ denotes a
random number and CR is the crossover probability. Finally, the new child (s0) is set
as the generated mutant values plus the remaining ones from the current solution (s).
Hence, the CR constant controls the fraction of values that are mutated.

The DEoptim function includes six arguments:

• fn—function to be minimized;
• lower, upper—lower and upper bounds;
• control—a list of control parameters (details are given in function
DEoptim.control);

• ...—additional arguments to be passed to fn; and
• fnMap—optional function that is run after each population creation but before

the population is evaluated (it allows to impose integer/cardinality constraints).

The control parameters (C) are specified using the DEoptim.control function,
which contains arguments such as:

• VTR—value to be reached, stop if best value is below VTR (default VTR=-Inf);
• strategys—type of differential strategy adopted, includes six differ-

ent mutation strategies (classical mutation is set using strategy=1,
default is strategy=2, full details can be accessed by executing
> ?DEoptim.control);

• NP—population size (default is 10*length(lower));
• itermax—maximum number of iterations (default is 200);

72 5 Population Based Search

• CR—crossover probability (CR 2 Œ0; 1�, default is 0.5);
• F—differential weighting factor (F 2 Œ0; 2�, default is 0.8);
• trace—a logical or integer value indicating if progress should be reported (if

integer it occurs every trace iterations, default is true);
• initialpop—an initial population (defaults to NULL);
• storepopfrom, storepopfreq—from which iteration and with which

frequency should the population values be stored; and
• reltol, steptol—relative convergence tolerance stop criterion, the method

stops if unable to reduce the value by a factor of reltol*(abs(value))
after steptol iterations.

The result of the DEoptim function is a list that contains two components:

• $optim—a list with elements, such as $bestmem—best solution and
$bestval—best evaluation value;

• $member—a list with components, such as bestvalit—best value at each
iteration and pop—last population.

Similarly to the genalg package, DEoptim also includes functions for plotting
(plot.DEoptim) and summarizing (summary.DEoptim) results (under S3
scheme of method dispatching).

Price et al. (2005) advise the following general configuration for the differential
evolution parameters: use the default F D 0:8 and CR D 0:9 values and set the
population size to ten times the number of solution values (NP D 10�LS). Further
details about the DEoptim package can be found in Mullen et al. (2011) (execute
> vignette("DEoptim") to get an immediate access to this reference).

The demonstration sphere-DEoptim.R code adopts the sphere (D D 2)
task:

sphere-DEoptim.R file
library(DEoptim) # load DEoptim

sphere=function(x) sum(x^2)
D=2
maxit=100
set.seed(12345) # set for replicability
C=DEoptim.control(strategy=1,NP=5,itermax=maxit,CR=0.9,F=0.8,

trace=25,storepopfrom=1,storepopfreq=1)
perform the optimization:
D=suppressWarnings(DEoptim(sphere,rep(-5.2,D),rep(5.2,D),

control=C))
show result:
summary(D)
pdf("DEoptim.pdf",onefile=FALSE,width=5,height=9,

colormodel="gray")
plot(D,plot.type="storepop")
dev.off()
cat("best:",D$optim$bestmem,"f:",D$optim$bestval,"\n")

5.4 Particle Swarm Optimization 73

The C object contains the control parameters, adjusted for the classical differential
mutation and population size of 5, among other settings (the arguments
storepopfrom and storepopfreq are required for the plot). Giving that
DEoptim produces a warning when the population size is not set using the advised
rule (NP D 10 � LS), the suppressWarnings R function was added to ignore
such warning. Regarding the plot, the informative "storepop" was selected
(other options are "bestmemit"—evolution of the best parameter values; and
"bestvalit"—best function value in each iteration). Also, additional arguments
were used in the pdf function (onefile and colormodel) in order to adjust
the file to contain just one page with a gray coloring scheme. The execution result
of file sphere-DEoptim.R is:

> source("sphere-DEoptim.R")
Iteration: 25 bestvalit: 0.644692 bestmemit: 0.799515

0.073944
Iteration: 50 bestvalit: 0.308293 bestmemit: 0.550749

-0.070493
Iteration: 75 bestvalit: 0.290737 bestmemit: 0.535771

-0.060715
Iteration: 100 bestvalit: 0.256731 bestmemit: 0.504867

-0.042906

***** summary of DEoptim object *****
best member : 0.50487 -0.04291
best value : 0.25673
after : 100 generations
fn evaluated : 202 times

best: 0.5048666 -0.0429055 f: 0.2567311

The differential evolution algorithm improved the best value of the initial population
from 7.37 to 0.25, leading to the optimized solution of s D .0:50;�0:04/. Figure 5.5
presents the result of the plot, showing a fast convergence in the population towards
the optimized values (0.5 and �0:04). The first optimized value (0.5) is not very
close to the optimum. However this is a tutorial example that includes a very small
population size. When the advised rule is used (NP D 20), the maximum distance
of the optimized point to the origin is 7:53 � 10�10!

5.4 Particle Swarm Optimization

Swarm intelligence denotes a family of algorithms (e.g., ant colony and particle
swarm optimization) that are inspired in swarm behavior, which is exhibited by
several animals (e.g., birds, ants, bees). These algorithms assume a population of
simple agents with direct or indirect interactions that influence future behaviors.
While each agent is independent, the whole swarm tends to produce a self-organized
behavior, which is the essence of swarm intelligence (Michalewicz et al. 2006).

74 5 Population Based Search

Fig. 5.5 Population
evolution in terms of x1 (top)
and x2 (bottom) values under
the differential evolution
algorithm for sphere
(D D 2)

lllll

llll
l

l

lll

l
l
l

llllll
l
lll

lllllll
ll

0 20 40 60 80 100

0

1

2

3

4

par1

stored population
va

lu
e

lll

llll

llll

ll
l

lll

llllllll
ll

lllllllll
lll

l

lllll

llllll

llll

ll
lll

ll
ll

ll
llllllll

ll

lll

ll

llll

llll

l

lllll

ll
l

ll
lll

l

lll

llllll

l

ll

llllllllll
l

ll
lllllllll

ll

llll

llll
l
lll

l
l
ll

l

lllll
l

ll

0 20 40 60 80 100

−2

0

2

4

par2

stored population

va
lu

e

ll

l
llll

llll

llllll
ll

lllllllllllllllll
lll

l
lllll

llllll

ll
ll

ll

lll
llllllllll

l
lll

lll

ll

lllll

l

ll
l
lll

ll

ll

l
l
llllllllllllllllll

ll
ll

l

ll

l

l

llllll

ll

llllllllll
ll

Particle swarm optimization is a swarm intelligence technique that was proposed
by Kennedy and Eberhart (1995) for numerical optimization. Similarly to differen-
tial evolution, particle swarms operate mostly on metric spaces (Luke 2012). The
algorithm is defined by the evolution of a population of particles, represented as
vectors with a D-th (or LS) dimensional space. The particle trajectories oscillate
around a region that is influenced by the individual previous performance and by
the success of his neighborhood (Mendes et al. 2002).

Since the original algorithm was presented in 1995, numerous variants have been
proposed. This chapter adopts the pso package, which implements two standard
versions that have been made publicly available at the Particle Swarm Central site
(http://www.particleswarm.info/): SPSO 2007 and 2011. It is important to note that
these SPSO variants do not claim to be the best versions on the market. Rather,
SPSO implement the original particle swarm version (Kennedy and Eberhart 1995)
with few improvements based on recent works. The goal is to define stable standards
that can be compared against newly proposed particle swarm algorithms.

A particle moves on a step-by-step basis, where each step is also known
as iteration, and contains (Clerc 2012): a position (s, inside search space), a
fitness value (f), a velocity (v, used to compute next position), and a memory
(p, previous best position found by the particle, and l , previous best position in
the neighborhood). Each particle starts with random position and velocity values.
Then, the search is performed by a cycle of iterations. During the search, the swarm
assumes a topology, which denotes a set of links between particles. A link allows

http://www.particleswarm.info/

5.4 Particle Swarm Optimization 75

Algorithm 7 Particle swarm optimization pseudo-code for SPSO 2007 and 2011
1: Inputs: f; C F f is the fitness function, C includes control parameters
2: P ini t ialization.C / F set initial swarm (topology, random position and velocity,

previous best and previous best position found in the neighborhood)
3: B best.P; f / F best particle
4: i 0 F i is the number of iterations of the method
5: while not termination_cri teria.P; f; C; i/ do
6: for each particle x D .s; v; p; l/ 2 P do F cycle all particles
7: v velocity.s; v; p; l/ F compute new velocity for x

8: s sC v F move the particle to new position s (mutation)
9: s conf inement.s; C / F adjust position s if it is outside bounds

10: if f .s/ < f .p/ then p s F update previous best
11: end if
12: x .s; v; p; l/ F update particle
13: if f .s/ < f .B/ then B s F update best value
14: end if
15: end for
16: i i C 1

17: end while
18: Output: B F best solution

one particle to inform another one about its memory. The neighborhood is defined
by the set of informants of a particle. The new particle position depends on its
current position and velocity, while velocity values are changed using all elements
of a particle (s, v, p and l). The overall pseudo-code for SPSO 2007 and 2011
is presented in Algorithm 7, which assumes a minimization goal.

This chapter highlights only the main SPSO differences. The full details are
available at Clerc (2012). Several termination criteria are defined in SPSO 2007
and 2011: maximum admissible error (when optimum point is known), maximum
number of iterations/evaluations, and maximum number of iterations without
improvement. Regarding the swarm size (NP), in SPSO 2007 it is automatically
defined as the integer part of 10 C 2

p
LS (LS denotes the length of a solution),

while in SPSO 2011 it is user defined (with suggested value of 40).
Historically, two popular particle swarm topologies (Mendes et al. 2002) were:

star, where all particles know each other; and ring, where each particle has only two
neighbors. However, the SPSO variants use a more recent adaptive star topology
(Clerc 2012), where each particle informs itself and K randomly particles. Usually,
K is set to 3. SPSO 2007 and 2011 use similar random uniform initializations
for the position: sj D U .min .sj /; max .sj //; j 2 f1; : : : ; LSg. However, the

velocity is set differently: SPSO 2007—vj D U .min .sj /;max .sj //�sj

2
; SPSO 2011—

vj D U .min .sj / � sj ; max .sj / � sj /.
In SPSO 2007, the velocity update is applied dimension by dimension:

vj wvj CU .0; c/.pj � sj /CU .0; c/.lj � sj / (5.1)

76 5 Population Based Search

where w and c are exploitation and exploration constants. The former constant
sets the ability to explore regions of the search space, while the latter one defines
the ability to concentrate around a promising area. The suggested values for these
constants are w D 1=.2 ln 2/ ' 0:721 and c D 1=2 C ln.2/ ' 1:193. A different
scheme is adopted for SPSO 2011. First, the center of gravity (Gj) of three points
(current position and two points, slightly beyond p and l):

Gj D sj C c
pj C lj � 2sj

3
(5.2)

Then, a random point (s0) is selected within the hypersphere of center Gj and radius
k Gj�sj k. Next, the velocity is updated as vj D wvjCs0j�sj and the new position
is simply adjusted using sj D wvj C s0j . There is a special case, when l D p. In
such case, in SPSO 2007, the velocity is set using vj wvj CU .0; c/.pj � sj /,
while in SPSO 2011 the center of gravity is computed using sj C c

pj�sj

2
.

The confinement function is used to assure that the new position is within the
admissible bounds. In both SPSO variants, when a position is outside a bound, it is
set to that bound. In SPSO 2007, the velocity is also set to zero, while in SPSO 2011
it is set to half the opposite velocity (vj D �0:5vj).

The pso package includes the core psoptim function that can be used as a
replacement of function optim (Sect. 4.3) and includes arguments, such as:

• par—vector defining the dimensionality of the problem (LS), included for
compatibility with optim and can include NA values;

• fn—function to be minimized;
• lower, upper—lower and upper bounds;
• ...—additional arguments to be passed to fn; and
• control—a list of control parameters.

The control list includes components, such as:

• $trace—if positive, progress information is shown (default is 0);
• $fnscale—scaling applied to the evaluation function (if negative, transforms

the problem into maximization; default is 1);
• $maxit—maximum number of iterations (defaults to 1,000);
• $maxf—maximum number of function evaluations;
• $abstol—stops if best fitness is less than or equal to this value (defaults to
-Inf);

• $reltol—if the maximum distance between best particle and all others is less
than reltol*d, then the algorithm restarts;

• $REPORT—frequency of reports if trace is positive;
• $trace.stats—if TRUE, then statistics at every REPORT step are recorded;
• $s—swarm size (NP);
• $k—K value (defaults to 3);

5.4 Particle Swarm Optimization 77

• $p—average percentage of informants for each particle (a value of 1 implies a
fully informed scheme, where all particles and not just K neighbors affect the
individual velocity, defaults to 1-(1-1/s)ˆk);

• $w—exploitation constant (if a vector of 2 elements, constant is gradually
changed from w[1] to w[2], default 1/(2*log(2));

• $c.p—local exploration constant (associated with p, defaults to 0.5+
log(2));

• $c.g—global exploration constant (associated with l , defaults to 0.5+
log(2));

• $d—diameter of the search space (defaults to Euclidean distance between
upper and lower);

• $v.max—maximum admitted velocity (if not NA the velocity is clampled to the
length of v.max*d, defaults to NA);

• $maxit.stagnate—maximum number of iterations without improvement
(defaults to Inf); and

• $type —SPSO implementation type (“SPSO2007” or “SPSO2011,” defaults to
“SPSO2007”).

The result is a list (compatible with optim) that contains:

• $par—best solution found;
• $value—best evaluation value;
• $counts—vector with three numbers (function evaluations, iterations, and

restarts);
• $convergence and $message—stopping criterion type and message; and
• $stats—if trace is positive and trace.stats is true, then it contains

the statistics: it—iteration numbers, error—best fitnesses, f—current swarm
fitness vector, and x—current swarm position matrix.

The sphere-psoptim.R file adapts the psoptim function for the sphere
(D D 2) task:

sphere-psoptim.R file
library(pso) # load pso

sphere=function(x) sum(x^2)

D=2; maxit=10; s=5
set.seed(12345) # set for replicability
C=list(trace=1,maxit=maxit,REPORT=1,trace.stats=1,s=s)
perform the optimization:
PSO=psoptim(rep(NA,D),fn=sphere,lower=rep(-5.2,D),

upper=rep(5.2,D),control=C)
result:
pdf("psoptim1.pdf",width=5,height=5)
j=1 # j-th parameter
plot(xlim=c(1,maxit),rep(1,s),PSO$stats$x[[1]][j,],pch=19,

xlab="iterations",ylab=paste("s_",j," value",sep=""))

78 5 Population Based Search

for(i in 2:maxit) points(rep(i,s),PSO$stats$x[[i]][j,],pch=19)
dev.off()
pdf("psoptim2.pdf",width=5,height=5)
plot(PSO$stats$error,type="l",lwd=2,xlab="iterations",

ylab="best fitness")
dev.off()
cat("best:",PSO$par,"f:",PSO$value,"\n")

In this demonstration, a very small swarm size (NP D 5) was adopted. Also,
the control list was set to report statistics every iteration, under a maximum of
ten iterations. The visual results are presented in terms of two plots. The first
plot is similar to Fig. 5.5 and shows the evolution of the position particles for the
first parameter. The second plot shows the evolution of the best fitness during the
optimization. The execution of file sphere-psoptim.R is:

> source("sphere-psoptim.R")
S=5, K=3, p=0.488, w0=0.7213, w1=0.7213, c.p=1.193, c.g=1.193
v.max=NA, d=14.71, vectorize=FALSE, hybrid=off
It 1: fitness=3.318
It 2: fitness=0.9281
It 3: fitness=0.7925
It 4: fitness=0.4302
It 5: fitness=0.2844
It 6: fitness=0.2394
It 7: fitness=0.2383
It 8: fitness=0.2383
It 9: fitness=0.1174
It 10: fitness=0.1174
Maximal number of iterations reached
best: 0.2037517 -0.2755488 f: 0.1174419

The particle swarm improved the best fitness from 3.318 to 0.1174, leading to the
optimized solution of s D .0:20;�0:28/ (f D 0:12). Figure 5.6 presents the result
of the plots. It should be stressed that this tutorial example uses a very small swarm.
When the advised rule is adopted (NP D 12), the optimized values are f D 0:03

(10 iterations) and f D 9:36 � 10�12 (100 iterations).

5.5 Estimation of Distribution Algorithm

Estimation of distribution algorithms (EDA) (Larrañaga and Lozano 2002) are
optimization methods that combine ideas from evolutionary computation, machine
learning, and statistics. These methods were proposed in the mid-1990s, under
several variants, such as population based incremental learning (PBIL) (Baluja
1994) and univariate marginal distribution algorithm (UMDA) (Mühlenbein 1997).

EDA works by iteratively estimating and sampling a probability distribution
that is built from promising solutions (Gonzalez-Fernandez and Soto 2012). Other
population based methods (e.g., evolutionary algorithms) create new individuals

5.5 Estimation of Distribution Algorithm 79

ll

l

l

l

l

2 4 6 8 10

−
2

−
1

0
1

2

iterations

s_
1

va
lu

e

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

iterations

be
st

 fi
tn

es
s

Fig. 5.6 Particle swarm optimization for sphere and D D 2 (left denotes the evolution of the
position particles for the first parameter; right shows the evolution of the best fitness)

using an implicit distribution function (e.g., due to mutation and crossover oper-
ators). In contrast, EDA uses an explicit probability distribution defined by a model
class (e.g., normal distribution). One main advantage of EDAs is that the search
distribution may encode dependencies between the domain problem parameters,
thus performing a more effective search.

The EDAs adopted in this chapter are implemented in the copulaedas package.
The full implementation details are available at Gonzalez-Fernandez and Soto
(2012). The generic EDA structure is presented in Algorithm 8. The initial
population is often created by using a random seeding method. The results of global
optimization methods, such as EDAs, can often be enhanced when combined with
a local optimization method. Also, as described in Chap. 1, such local optimization
can be useful to repair infeasible solutions (see Sect. 5.7 for an example). Then, the
population of solutions are improved in a main cycle, until a termination criterion
is met.

Within the main cycle, the selection function goal is to choose the most
interesting solutions. For instance, truncation selection chooses a percentage of
the best solutions from current population (P). The essential steps of EDA are the
estimation and simulation of the search distribution, which is implemented by the
learn and sample functions. The learning estimates the structure and parameters of
the probabilistic model (M) and the sampling is used to generate new solutions
(P 0) from the probabilistic model. Finally, the replacement function defines the
next population. For instance, by replacing the full current population by the
newly sampled one (P 0), by maintaining only the best solutions (found in both
populations) or by keeping a diverse set of solutions.

The copulaedas package implements EDAs based on copula functions (Joe
1997), under a modular object oriented implementation composed of separated
generic functions that facilitates the definition of new EDAs (Gonzalez-Fernandez
and Soto 2012). EDA components, such as learning and sampling methods,
are independently programmed under a common structure shared by most EDAs.

80 5 Population Based Search

Algorithm 8 Generic EDA pseudo-code implemented in copulaedas package,
adapted from Gonzalez-Fernandez and Soto (2012)
1: Inputs: f; C F f is the fitness function, C includes control parameters (e.g., NP)
2: P ini t ialization.C / F set initial population (seeding method)
3: if required then P local_optimization.P; f; C / F apply local optimization to P

4: end if
5: B best.P; f / F best solution of the population
6: i 0 F i is the number of iterations of the method
7: while not termination_cri teria.P; f; C / do
8: P 0 selection.P; f; C / F selected population P 0

9: M learn.P 0/ F set probabilistic model M using a learning method
10: P 0 sample.M / F set sampled population from M using a sampling method
11: if required then P 0 local_optimization.P 0; f; C / F apply local optimization to

P 0

12: end if
13: B best.B; P 0; f / F update best solution (if needed)
14: P replacement.P; P 0; f; C / F create new population using a replacement method
15: i i C 1

16: end while
17: Output: B F best solution

The package uses S4 classes, which denotes R objects that have a formal definition
of a class (type > help("Classes") for more details) and generic methods that
can be defined by using the setMethod R function. An S4 instance is composed
of slots, which is a class component that can be accessed and changed using the @
symbol. An S4 class instance can be displayed at the console by using the show()
R function.

The main function is edaRun, which implements Algorithm 8, assumes a
minimization goal, and includes four arguments:

• eda—an EDA instance;
• f—evaluation function to be minimized; and
• lower, upper—lower and upper bounds.

The result is an EDAResult class with several slots, namely: @eda—EDA
class; @f—evaluation function; @lower and @upper—lower and upper
bounds; @numGens—number of generations (iterations); @fEvals—number
of evaluations; @bestEval—best evaluation; @bestSol—best solution; and
@cpuTime—time elapsed by the algorithm;

An EDA instance can be created using one of two functions, according to
the type of model of search distributions: CEDA—using multivariate copula; and
VEDA—using vines (graphical models that represent high-dimensional distributions
and that can model a more rich variety of dependencies). The main arguments of
CEDA are: copula—"indep" (independence or product copula) or "normal"
(normal copula, the default); margin—marginal distribution (e.g., "norm"); and
popSize—population size (NP , default is 100). The VEDA function includes the
same margin and popSize arguments and also: vine—"CVine" (canonical

5.5 Estimation of Distribution Algorithm 81

vine) or "DVine" (the default); copulas—candidate copulas: "normal",
"t", "clayton", "frank" or "gumbel" (default is c("normal")); and
indepTestSigLevel—significance independence test level (default 0.01).
The result is a CEDA (or VEDA) class with two slots: @name—the EDA name; and
@parameters—the EDA parameters. Using these two functions, several EDAs
can be defined, including UMDA, Gaussian copula EDA (GCEDA), C-vine EDA
(CVEDA) and D-vine (DVEDA):

four EDA types:
adapted from (Gonzalez-Fernandez and Soto, 2012)
UMDA=CEDA(copula="indep",margin="norm"); UMDA@name="UMDA"
GCEDA=CEDA(copula="normal",margin="norm"); GCEDA@name="GCEDA"
CVEDA=VEDA(vine="CVine",indepTestSigLevel=0.01,

copulas = c("normal"),margin = "norm")
CVEDA@name="CVEDA"
DVEDA=VEDA(vine="DVine",indepTestSigLevel=0.01,

copulas = c("normal"),margin = "norm")
DVEDA@name="DVEDA"

The population size (NP) is a critical factor of EDA performance, if too small
then the estimate of the search distributions might be inaccurate, while a too large
number increases the computational effort and might not introduce any gain in
the optimization. Thus, several population size values should be tested. In partic-
ular, the copulaedas vignette (Gonzalez-Fernandez and Soto 2012) presents a
bisection method that starts with an initial interval and that is implemented using
the edaCriticalPopSize function (check > ?edaCriticalPopSize).

The copulaedas package includes several other generic methods that can
be defined using the setMethod function (type > help("EDA-class")

for more details), such as: edaSeed—initialization function (default is
edaSeedUniform); edaOptimize—local optimization (disabled by default,
Sect. 5.7 exemplifies how to define a different function); edaSelect—
selection function (default is edaSelectTruncation); edaReplace—
replacement function (default is edaReplaceComplete—P is replaced by P 0);
edaReport—reporting function (disabled by default); and edaTerminate—
termination criteria (default edaTerminateMaxGen—maximum of iterations).

The same sphere (D D 2) task is used to demonstrate the EDA:

sphere-EDA.R file
library(copulaedas)

sphere=function(x) sum(x^2)

D=2; maxit=10; LP=5
set.seed(12345) # set for replicability

set termination criterion and report method:
setMethod("edaTerminate","EDA",edaTerminateMaxGen)
setMethod("edaReport","EDA",edaReportSimple)

82 5 Population Based Search

set EDA type:
UMDA=CEDA(copula="indep",margin="norm",popSize=LP,maxGen=maxit)
UMDA@name="UMDA (LP=5)"
run the algorithm:
E=edaRun(UMDA,sphere,rep(-5.2,D),rep(5.2,D))
show result:
show(E)
cat("best:",E@bestSol,"f:",E@bestEval,"\n")

second EDA execution, using LP=100:
maxit=10; LP=100;
UMDA=CEDA(copula="indep",margin="norm",popSize=LP,maxGen=maxit)
UMDA@name="UMDA (LP=100)"
setMethod("edaReport","EDA",edaReportDumpPop) # pop_*.txt files
E=edaRun(UMDA,sphere,rep(-5.2,D),rep(5.2,D))
show(E)
cat("best:",E@bestSol,"f:",E@bestEval,"\n")

read dumped files and create a plot:
pdf("eda1.pdf",width=7,height=7)
j=1; # j-th parameter
i=1;d=read.table(paste("pop_",i,".txt",sep=""))
plot(xlim=c(1,maxit),rep(1,LP),d[,j],pch=19,

xlab="iterations",ylab=paste("s_",j," value",sep=""))
for(i in 2:maxit)
{ d=read.table(paste("pop_",i,".txt",sep=""))
points(rep(i,LP),d[,j],pch=19)

}
dev.off()

In this example, the UMDA EDA type was selected using two different population
sizes (NP D 5 and NP D 100, which is the default copulaedas value). For
the last EDA, the edaReportDumpPop report type is adopted, which dumps
each population into a different text file (e.g., the first population is stored at
pop_1.txt). After showing the second EDA result, the dumped files are read
using the read.table command, in order to create the plot of Fig. 5.7. The
execution result of such demonstration code is:

> source("sphere-EDA.R")

Generation Minimum Mean Std. Dev.
1 7.376173e+00 1.823098e+01 6.958909e+00
2 7.583753e+00 1.230911e+01 4.032899e+00
3 8.001074e+00 9.506158e+00 9.969029e-01
4 7.118887e+00 8.358575e+00 9.419817e-01
5 7.075184e+00 7.622604e+00 3.998974e-01
6 7.140877e+00 7.321902e+00 1.257652e-01
7 7.070203e+00 7.222189e+00 1.176669e-01
8 7.018386e+00 7.089300e+00 4.450968e-02
9 6.935975e+00 7.010147e+00 7.216829e-02
10 6.927741e+00 6.946876e+00 1.160758e-02

Results for UMDA (LP=5)

5.5 Estimation of Distribution Algorithm 83

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

2 4 6 8 10

−
4

−
2

0
2

4

iterations

s_
1

va
lu

e

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

ll

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

ll

l

l

l

ll

l

ll

l

l

l
l
ll

l

l

l

l
l
l
ll

l

l

l

l
l
lll

l

l

l

l

ll

l
l

ll

l

l
l
l
l

l

l

ll

l
l

l
l

l

l

l

l

ll
l

ll

l

l

l

l

l

l

l

l
l
l

ll
l

l

l

l

l

l

l

l

l

l

l

l
l

l
lll
l

l

l

ll

ll

l

l
l
ll
l
l

ll
l

ll
l

l

l

l

l

ll
lll
l
l

ll

l
l

l

l

l

ll

l

l

l
l

l
l

l

l
l

l

l

l

ll

l

l

ll
ll
l
l

l

ll

l
l

ll

l

l

l
l
l

l

ll

l
lll
l

ll
l
l
l
l

l

l

l
l

ll

l

l
l
l
l
llll
lll
l
l
llllll
lll
llllllll
l
l
l
l
l
lll
lll
llll

l

llllllllllllllllll
llllll
llll
l
lllll
l
ll
llll
l
ll
l
lllll
lllll lll

l
lllllllllllllllllllll
lllllllllllllllll ll ll ll ll

Fig. 5.7 Evolution of the first parameter population values (x1) for EDA (NP D 100)

Best function evaluation 6.927741e+00
No. of generations 10
No. of function evaluations 50
CPU time 0.103 seconds
best: 1.804887 -1.915757 f: 6.927741

Results for UMDA (LP=100)
Best function evaluation 5.359326e-08
No. of generations 10
No. of function evaluations 1000
CPU time 0.036 seconds
best: -0.00013545 0.0001877407 f: 5.359326e-08

When only five individuals are used, the algorithm only performs a slight optimiza-
tion (from f D 7:38 to f D 6:93). However, when a higher population size is
adopted (NP D 100), the EDA performs a very good optimization, achieving a value
of 5:36 � 10�8 in only ten generations. Figure 5.7 shows the respective evolution
of the first parameter population values, showing a fast convergence towards the
optimum zero value.

84 5 Population Based Search

5.6 Comparison of Population Based Methods

The goal of this section is to compare all previously presented population based
algorithms on two tasks (rastrigin, D D 20; and bag prices, D D 5). Four
continuous optimization methods are compared: evolutionary algorithm, differential
evolution, particle swarm optimization (SPSO 2007), and EDA (GCEDA variant).
For the second task, each solution is rounded to the nearest integer value (within
[$1,$1000]) before computing the profit. Each method is run fifty times for each
task. To simplify the analysis, the comparison is made only in terms of aggregated
results over the runs (average or percentage of successes) and no confidence
intervals or statistical tests are used (check Sects. 2.2, 4.5, and 5.7 for R code
examples of more robust statistical comparative analysis).

Similarly to what is discussed in Sect. 4.5, rather than executing a complete and
robust comparison, the intention is more to show how population based algorithms
can be compared. To provide a fair comparison and to simplify the experimentation
setup, the default parameters of the methods are adopted, except for the population
size, which is kept the same for all methods (NP D 100 for rastrigin and NP D 50

for bag prices). Also, as performed in Sect. 4.5, all methods are evaluated by
storing the best value as a function of the number of evaluations and up to the
same maximum number (MAXFN=10000 for rastrigin and MAXFN=5000 for bag
prices).

The comparison code (file compare2.R) uses the same global variables of
Sect. 4.5 (EV, F and BEST), to store the best value:

compare2.R file

source("functions.R") # bag prices functions
library(genalg)
library(DEoptim)
library(pso)
library(copulaedas)

evaluation functions: ------------------------------------
crastrigin=function(x) # adapted rastrigin
{ f=10*length(x)+sum(x

^2-10*cos(2*pi*x))
global assignment code: <<-
EV<<-EV+1 # increase evaluations
if(f<BEST) BEST<<-f # minimum value
if(EV<=MAXFN) F[EV]<<-BEST
return(f)

}
cprofit=function(x) # adapted bag prices
{ x=round(x,digits=0) # convert x into integer
given that EDA occasionally produces unbounded values:
x=ifelse(x<1,1,x) # assure that x is within
x=ifelse(x>1000,1000,x) # the [1,1000] bounds
s=sales(x) # get the expected sales
c=cost(s) # get the expected cost
profit=sum(s*x-c) # compute the profit
EV<<-EV+1 # increase evaluations
if(profit>BEST) BEST<<-profit # maximum value

5.6 Comparison of Population Based Methods 85

if(EV<=MAXFN) F[EV]<<-BEST
return(-profit) # minimization task!

}
auxiliary functions: ------------------------------------
crun=function(method,f,lower,upper,LP,maxit) # run a method
{ if(method=="EA")

rbga(evalFunc=f,stringMin=lower,stringMax=upper,popSize=LP,
iters=maxit*1.5)

else if(method=="DE")
{ C=DEoptim.control(itermax=maxit,trace=FALSE,NP=LP)
DEoptim(f,lower=lower,upper=upper,control=C)

}
else if(method=="PSO")

{ C=list(maxit=maxit,s=LP)
psoptim(rep(NA,length(lower)),fn=f,

lower=lower,upper=upper,control=C)
}

else if(method=="EDA")
{ setMethod("edaTerminate","EDA",edaTerminateMaxGen)
GCEDA=CEDA(copula="normal",margin="norm",popSize=LP,

maxGen=maxit)
GCEDA@name="GCEDA"
edaRun(GCEDA,f,lower,upper)

}
}

successes=function(x,LIM,type="min") # number of successes
{ if(type=="min") return(sum(x<LIM)) else return(sum(x>LIM)) }

ctest=function(Methods,f,lower,upper,type="min",Runs, # test
D,MAXFN,maxit,LP,pdf,main,LIM) # all methods:

{ RES=vector("list",length(Methods)) # all results
VAL=matrix(nrow=Runs,ncol=length(Methods)) # best values
for(m in 1:length(Methods)) # initialize RES object
RES[[m]]=matrix(nrow=MAXFN,ncol=Runs)

for(R in 1:Runs) # cycle all runs
for(m in 1:length(Methods))
{ EV<<-0; F<<-rep(NA,MAXFN) # reset EV and F
if(type=="min") BEST<<-Inf else BEST<<- -Inf # reset BEST
suppressWarnings(crun(Methods[m],f,lower,upper,LP,maxit))
RES[[m]][,R]=F # store all best values
VAL[R,m]=F[MAXFN] # store best value at MAXFN

}
compute average F result per method:
AV=matrix(nrow=MAXFN,ncol=length(Methods))
for(m in 1:length(Methods))

for(i in 1:MAXFN)
AV[i,m]=mean(RES[[m]][i,])

show results:
cat(main,"\n",Methods,"\n")
cat(round(apply(VAL,2,mean),digits=0)," (average best)\n")

86 5 Population Based Search

cat(round(100*apply(VAL,2,successes,LIM,type)/Runs,
digits=0)," (%successes)\n")

create pdf file:
pdf(paste(pdf,".pdf",sep=""),width=5,height=5,paper="special")
par(mar=c(4.0,4.0,1.8,0.6)) # reduce default plot margin
MIN=min(AV);MAX=max(AV)
use a grid to improve clarity:
g1=seq(1,MAXFN,length.out=500) # grid for lines
plot(g1,AV[g1,1],ylim=c(MIN,MAX),type="l",lwd=2,main=main,

ylab="average best",xlab="number of evaluations")
for(i in 2:length(Methods)) lines(g1,AV[g1,i],lwd=2,lty=i)
if(type=="min") position="topright" else position=

"bottomright"
legend(position,legend=Methods,lwd=2,lty=1:length(Methods))
dev.off() # close the PDF device

}

define EV, BEST and F:
MAXFN=10000
EV=0;BEST=Inf;F=rep(NA,MAXFN)
define method labels:
Methods=c("EA","DE","PSO","EDA")
rastrigin comparison: -----------------------------------
Runs=50; D=20; LP=100; maxit=100
lower=rep(-5.2,D);upper=rep(5.2,D)
ctest(Methods,crastrigin,lower,upper,"min",Runs,D,MAXFN,maxit,
LP,

"comp-rastrigin2","rastrigin (D=20)",75)
bag prices comparison: ----------------------------------
MAXFN=5000
F=rep(NA,MAXFN)
Runs=50; D=5; LP=50; maxit=100
lower=rep(1,D);upper=rep(1000,D)
ctest(Methods,cprofit,lower,upper,"max",Runs,D,MAXFN,maxit,LP,

"comp-bagprices","bag prices (D=5)",43500)

Two important auxiliary functions were defined: crun—for executing a run of
one of the four methods; and ctest—for executing several runs and showing the
overall results. For the evolutionary algorithm, the maximum number of iterations
is increased by 50 % to assure that at least MAXFN evaluations are executed (due to
elitism, the number of tested solutions is lower than NP � maxit). The obtained
results for each task are presented in terms of a plot and two console metrics. Each
plot shows in the y-axis the evolution of the average best value, while the x-axis
contains the number of evaluation functions. The two metrics used are: the average
(over all runs) the best result (measured at MAXFN) and the percentage of successes.
The last metric is measured as the proportion of best results below 75 (for rastrigin)
or above 43,500 (for bag prices).

The results of the two plots are presented in Fig. 5.8, while the console results are:

> source("compare2.R")
rastrigin (D=20)
EA DE PSO EDA

5.6 Comparison of Population Based Methods 87

0 2000 4000 6000 8000 10000

50
10

0
15

0
20

0
25

0
30

0
35

0

rastrigin (D=20)

number of evaluations

av
er

ag
e

be
st

EA
DE
PSO
EDA

0 1000 2000 3000 4000 5000

30
00

0
35

00
0

40
00

0

bag prices (D=5)

number of evaluations

av
er

ag
e

be
st

EA
DE
PSO
EDA

Fig. 5.8 Population based search comparison example for the rastrigin (top) and bag prices
(bottom) tasks

38 64 101 74 (average best)
100 94 2 58 (%successes)
EA DE PSO EDA

43674 43830 43722 43646 (average best)
96 100 100 92 (%successes)

The comparison of methods using the methodology related with Fig. 5.8 is
interesting, as it presents the average behavior of the method throughout the number

88 5 Population Based Search

of evaluations, which is correlated with computational effort. EDA shows a faster
initial convergence when compared with other methods (see Fig. 5.8) and thus it
is the best choice if few computational resources are available. However, after a
while the EDA convergence gets more flat and the method is outperformed by
the evolutionary algorithm for rastrigin (after around 5,000 evaluations) and by
the differential evolution for bag prices (after around 2,000 evaluations). Hence, if
more computation power is available, then evolutionary algorithm is the best method
(at MAXFN) for rastrigin, with an average of 38 and 100 % of successes, while
differential evolution is the best choice for bag prices, with an average of 43,830 and
100 % of successes. It should be noted that this is just a demonstrative comparison
example and different results could be achieved with a distinct experimental setup
(e.g., different NP and MAXFN values).

5.7 Bag Prices with Constraint

This section compares two strategies for handling constraints: death penalty and
repair. As explained in Sect. 1.5, death penalty is a simply strategy that can be
easily applied to any optimization method. It requires only changing the evaluation
function to return very high penalty value if the solution is infeasible. However,
such strategy is not very efficient, since the infeasible solutions do not guide the
search, thus behaving similarly to Monte Carlo random search, see Sect. 3.4. The
repair alternative tends to be more efficient, as it transforms an infeasible solution
into a feasible one, but often requires domain knowledge.

For this comparison, the bag prices task (of Sect. 1.7) is adopted with a hard
constraint: the maximum number of bags that can be manufactured within a
production cycle is set to 50. Also, the EDA method is used as the optimization
engine, since the copulaedas package presents a useful feature for the repair
strategy, since it is possible to add a local optimization method within the EDA
main cycle (by using the edaOptimize generic method). The death penalty is
simply implemented by returning Inf when a solution is infeasible, while the
repair method uses a local search and domain knowledge. The code of Sect. 5.6
was adapted (e.g., same NP , maxit and MAXFN values) for this experiment:

bag-prices-constr.R file

source("functions.R") # bag prices functions
library(copulaedas) # EDA

evaluation function: ------------------------------------
cprofit2=function(x) # bag prices with death penalty
{ x=round(x,digits=0) # convert x into integer
x=ifelse(x<1,1,x) # assure that x is within
x=ifelse(x>1000,1000,x) # the [1,1000] bounds
s=sales(x)
if(sum(s)>50) res=Inf # if needed, death penalty!!!

5.7 Bag Prices with Constraint 89

else{ c=cost(s);profit=sum(s*x-c)
if needed, store best value
if(profit>BEST) { BEST<<-profit; B<<-x}
res=-profit # minimization task!

}
EV<<-EV+1 # increase evaluations
if(EV<=MAXFN) F[EV]<<-BEST
return(res)

}
example of a local search method that repairs a solution:
localRepair=function(eda, gen, pop, popEval, f, lower, upper)
{
for(i in 1:nrow(pop))
{ x=pop[i,]
x=round(x,digits=0) # convert x into integer
x=ifelse(x<lower[1],lower[1],x) # assure x within
x=ifelse(x>upper[1],upper[1],x) # bounds
s=sales(x)
if(sum(s)>50)
{
x1=x
while(sum(s)>50) # new constraint: repair
{ # increase price to reduce sales:
x1=x1+abs(round(rnorm(D,mean=0,sd=5)))
x1=ifelse(x1>upper[1],upper[1],x1) # bound if needed
s=sales(x1)

}
x=x1 # update the new x

}
pop[i,]=x;popEval[i]=f(x)

}
return(list(pop=pop,popEval=popEval))

}

experiment: --
MAXFN=5000
Runs=50; D=5; LP=50; maxit=100
lower=rep(1,D);upper=rep(1000,D)
Methods=c("Death","Repair")
setMethod("edaTerminate","EDA",edaTerminateMaxGen)
GCEDA=CEDA(copula="normal",margin="norm",popSize=LP,

maxGen=maxit,fEvalStdDev=10)
GCEDA@name="GCEDA"

RES=vector("list",length(Methods)) # all results
VAL=matrix(nrow=Runs,ncol=length(Methods)) # best values
for(m in 1:length(Methods)) # initialize RES object

RES[[m]]=matrix(nrow=MAXFN,ncol=Runs)
for(R in 1:Runs) # cycle all runs
{

B=NA;EV=0; F=rep(NA,MAXFN); BEST= -Inf # reset vars.
setMethod("edaOptimize","EDA",edaOptimizeDisabled)
setMethod("edaTerminate","EDA",edaTerminateMaxGen)

90 5 Population Based Search

suppressWarnings(edaRun(GCEDA,cprofit2,lower,upper))
RES[[1]][,R]=F # store all best values
VAL[R,1]=F[MAXFN] # store best value at MAXFN

B=NA;EV=0; F=rep(NA,MAXFN); BEST= -Inf # reset vars.
set local repair search method:
setMethod("edaOptimize","EDA",localRepair)
set additional termination criterion:
setMethod("edaTerminate","EDA",

edaTerminateCombined(edaTerminateMaxGen,
edaTerminateEvalStdDev))

this edaRun might produces warnings or errors:
suppressWarnings(try(edaRun(GCEDA,cprofit2,lower,upper),

silent=TRUE))
if(EV<MAXFN) # if stopped due to EvalStdDev

F[(EV+1):MAXFN]=rep(F[EV],MAXFN-EV) # replace NAs
RES[[2]][,R]=F # store all best values
VAL[R,2]=F[MAXFN] # store best value at MAXFN

}

compute average F result per method:
AV=matrix(nrow=MAXFN,ncol=length(Methods))
for(m in 1:length(Methods))
for(i in 1:MAXFN)

AV[i,m]=mean(RES[[m]][i,])
show results:
cat(Methods,"\n")
cat(round(apply(VAL,2,mean),digits=0)," (average best)\n")
Mann-Whitney non-parametric test:
p=wilcox.test(VAL[,1],VAL[,2],paired=TRUE)$p.value
cat("p-value:",round(p,digits=2),"(<0.05)\n")

create pdf file:
pdf("comp-bagprices-constr.pdf",width=5,height=5,paper=
"special")

par(mar=c(4.0,4.0,1.8,0.6)) # reduce default plot margin
use a grid to improve clarity:
g1=seq(1,MAXFN,length.out=500) # grid for lines
plot(g1,AV[g1,2],type="l",lwd=2,

main="bag prices with constraint",
ylab="average best",xlab="number of evaluations")

lines(g1,AV[g1,1],lwd=2,lty=2)
legend("bottomright",legend=rev(Methods),lwd=2,lty=1:4)
dev.off() # close the PDF device

The two constraint handling methods are compared similarly as in Sect. 5.6, thus
global EV, F, and BEST variables are used to store the best values at a given
function evaluation. The death penalty is implemented in function cprofit2.
The repair solution is handled by the localRepair function, which contains the
signature (function arguments) required by edaOptimize (e.g., eda argument is
not needed). If a solution is infeasible, then a local search is applied, where the
solution prices are randomly increased until the expected sales is lower than 51.
This local search uses the following domain knowledge: the effect of increasing

5.8 Genetic Programming 91

a price is a reduction in the number of sales. The new feasible solutions are then
evaluated. To reduce the number of code lines, the same cprofit2 function is
used, although the death penalty is never applied, given the evaluated solution is
feasible. The localRepair function returns a list with the new population and
evaluation values. Such list is used by edaRun to replace the sampled population
(P 0), thus behaving as a Lamarckian global–local search hybrid (see Sect. 1.6).

The EDA applied is similar to the one presented in Sect. 5.6 (e.g., GCEDA),
except for the repair strategy, which includes the explained local search and
an additional termination criterion (edaTerminateEvalStdDev), which stops
when the standard deviation of the evaluation of the solutions is too low. When
more than one criterion is used in EDA, the edaTerminateCombined method
needs to be adopted. The edaTerminateEvalStdDev extra criterion was added
given that the repair strategy leads to a very fast convergence and thus the population
quickly converges to the same solution. However, setting the right standard deviation
threshold value (fEvalStdDev) is not an easy task (setting a too large value will
stop the method too soon). With fEvalStdDev=10, edaRun still occasionally
produces warnings or errors. Thus, the suppressWarnings and tryR functions
are used to avoid this problem. The latter function prevents the failure of the
edaRun execution. Such failure is not problematic, giving that the results are stored
in global variables. In the evaluation function (cprofit2), the global variable B is
used to store the best solution, which is useful when edaRun fails. When a failure
occurs, the code also replaces the remaining NA values of the F object with the last
known evaluation value.

The obtained results are processed similarly to what is described in Sect. 5.6,
except that the number of successes is not measured and the final average
results are compared with a Mann–Whitney non-parametric statistical test (using
the wilcox.test function). An example of file bag-prices-constr.R
execution is:

> source("bag-prices-constr.R")
Death Repair
31175 32364 (average best)
p-value: 0 (<0.05)

As shown by the average results, statistical test (p-value<0.05) and plot of Fig. 5.9,
the repair strategy clearly outperforms the death penalty one, with a final average
difference of $1189 (statistically significant). Nevertheless, it should be noted that
this repair strategy uses domain knowledge and thus it cannot be applied directly to
other tasks.

5.8 Genetic Programming

Genetic programming denotes a collection of evolutionary computation methods
that automatically generate computer programs (Banzhaf et al. 1998). In general,
the computer programs have a variable length and are based on lists or trees

92 5 Population Based Search

0 1000 2000 3000 4000 5000

26
00

0
28

00
0

30
00

0
32

00
0

bag prices with constraint

number of evaluations

av
er

ag
e

be
st

Repair
Death

Fig. 5.9 Comparison of repair and death penalty strategies for bag prices task with constraint

(Luke 2012). Hence, the goal of genetic programming is quite distinct from the
previous presented population based algorithms. Instead of numerical optimization,
genetic programming is used in tasks such as automatic programming or discovering
mathematical functions. As pointed out in Flasch (2013), the one key advantage
of genetic programming is that the representation of the solutions is often easy to
interpret by humans; however, the main drawback is a high computational cost, due
to the high search space of potential solutions.

Genetic programming adopts the same concepts of evolutionary algorithms, with
a population of solutions that compete for survival and use of genetic operators for
generating new offspring. Thus, the search engine is similar to what is described in
Algorithm 5. Giving that a different representation is adopted (e.g., trees), a distinct
initialization function is adopted (e.g., random growth) and specialized genetic
operators are used (Michalewicz et al. 2006). There are two main mutation types
in classical genetic programming systems: replace a randomly selected value or
function by another random value or function; and replace a randomly selected
subtree by another generated subtree. The classical crossover works by replacing
a random subtree from a parent solution by another random subtree taken from a
second parent. Figure 5.10 shows an example of the random subtree crossover and
includes four examples of tree representations for mathematical functions.

This section approaches the mathematical function discovery goal using the
rgp package and the intention is to show how non-numerical representations
can be handled by a modern optimization technique. Only a brief explanation
of rgp features is provided, since the package includes a large range
of functions. If needed, further details can be obtained in Flasch (2013)
(> vignette("rgp_introduction")).

5.8 Genetic Programming 93

x

+

1.1

*x

x

−

+

0.3 x

x+(x*1.1)

(0.3+x)−((x+0.8)*−0.5)

parent 2parent 1

*

+ −0.5

0.8x

+

x

−

+

0.3 x

x+((x+0.8)*−0.5)

(0.3+x)−(x*1.1)

child 2child 1

*

+ −0.5

0.8x

1.1

*

Fig. 5.10 Example of a genetic programming random subtree crossover

The first step is to define the symbolic expression search space. In rgp, solutions
are represented as R functions, which are constructed in terms of three sets: input
variables (function arguments), constants, and function symbols. Constants are
created in terms of factory functions, which typically are stochastic and are called
each time a new constant is needed. The function symbols usually include arithmetic
operators, such as addition (+) or subtraction (-). Other R mathematical functions
can also be included (e.g., exp, log), but some care is needed to avoid invalid
expressions (e.g., log(-1) returns a NaN). These sets (whose members are known
as building blocks) can be set using the rgp functions:

• inputVariableSet—arguments are the names (strings) of input variables;
• constantFactorySet—argument is a factory function that often includes a

random number generator (e.g., rnorm, runif); and
• functionSet—arguments are strings that define the set of mathematical

symbols.

94 5 Population Based Search

Next, an evaluation function needs to be defined. The rgp assumes a a minimization
goal. The final step consists in selecting the genetic programming parameters
and running the algorithm. This is achieved using the geneticProgramming
function, which includes parameters such as:

• fitnessFunction—evaluation function that includes one argument (the
expression);

• stopCondition—termination criteria (usually based on maximum runtime,
in seconds; ?makeStepsStopCondition shows other stopping options
and full details);

• population—initial population, if missing it is created using a random
growth;

• populationSize—size of the population (NP , the default is 100);
• eliteSize—number of individuals to keep (elitism, defaults to ceiling
(0.1 * populationSize));

• functionSet—set of mathematical symbols;
• inputVariables—set of input variables;
• constantSet—set of constant factory functions;
• crossoverFunction—crossover operator (defaults to crossover, which

is the classical random subtree crossover, see Fig. 5.10);
• mutationFunction—mutation function (defaults to NULL, check
?mutateFunc for rgp mutation possibilities);

• progressMonitor—function called every generation and that shows the
progress of the algorithm; and

• verbose—if progress should be printed.

The result is a list with several components, including: $population, the last
population; and $fitnessValues, the evaluation values of such population.

To show the rgp capabilities, the synthetic rastrigin function (D D 2) is
adopted (check Sect. 7.3 for a real-world problem demonstration) and approximated
with a polynomial function. Thus, the variable set includes two inputs (x1 and x2)
and set of function symbols is defined as {“*”, “+”, “-”}. In this example, the
set of constants is generated using a normal distribution. Moreover, the evaluation
function is not the rastrigin function itself, since the goal is to approximate this
function. Rather, the evaluation function is set as the error between the rastrigin
and candidate expression outputs for an input domain. The mean squared error
(MSE) is the adopted error metric. Widely used in statistics, the metric is defined
as MSE D PN

iD1.yi � Oyi /
2=N , where yi is the target value for input xi , Oyi is the

estimated value, and N is the number of input examples. MSE penalizes higher
individual errors and the lower the metric, the better is the approximation. The
genetic programming is set with a population size of NP D 50, a random subtree
mutation (with maximum subtree depth of 4, using the mutateSubtree rgp
function) and it is stopped after 50 s. The implemented R code is:

5.8 Genetic Programming 95

gp-rastrigin.R

library(rgp) # load rgp

auxiliary functions:
rastrigin=function(x) 10*length(x)+sum(x

^2-10*cos(2*pi*x))
fwrapper=function(x,f) f(x[1],x[2])

configuration of the genetic programming:
ST=inputVariableSet("x1","x2")
cF1=constantFactorySet(function() rnorm(1)) # mean=0, sd=1
FS=functionSet("+","*","-")
set the input samples (grid^2 data points):
grid=10 # size of the grid used
domain=matrix(ncol=2,nrow=grid^2) # 2D domain grid
domain[,1]=rep(seq(-5.2,5.2,length.out=grid),each=grid)
domain[,2]=rep(seq(-5.2,5.2,length.out=grid),times=grid)
eval=function(f) # evaluation function
{ mse(apply(domain,1,rastrigin),apply(domain,1,fwrapper,f)) }

run the genetic programming:
set.seed(12345) # set for replicability
mut=function(func) # set the mutation function
{ mutateSubtree(func,funcset=FS,inset=ST, conset=cF1,

mutatesubtreeprob=0.1,maxsubtreedepth=4) }
gp=geneticProgramming(functionSet=FS,inputVariables=ST,

constantSet=cF1,populationSize=50,
fitnessFunction=eval,
stopCondition=makeTimeStopCondition(50),
mutationFunction=mut,verbose=TRUE)

show the results:
b=gp$population[[which.min(gp$fitnessValues)]]
cat("best solution (f=",eval(b),"):\n")
print(b)
create approximation plot:
L1=apply(domain,1,rastrigin);L2=apply(domain,1,fwrapper,b)
MIN=min(L1,L2);MAX=max(L1,L2)
pdf("gp-function.pdf",width=7,height=7,paper="special")
plot(L1,ylim=c(MIN,MAX),type="l",lwd=2,lty=1,

xlab="points",ylab="function values")
lines(L2,type="l",lwd=2,lty=2)
legend("bottomright",leg=c("rastrigin","GP function"),lwd=2,

lty=1:2)
dev.off()

In this example, the two input variables are named "x1" and "x2,"while the input
domain is created as a two dimensional grid, where each input is varied within the
range Œ�5:2; 5:2�, with a total of grid*grid=100 samples. The domainmatrix is
created using the rep and seq R functions (type > print(domain) to check the

matrix values). Such matrix is used by the eval function, which uses the apply

96 5 Population Based Search

function at the row level to generate first the rastrigin and expression (f) outputs and
then computes the MSE for all domain samples. The mse function computes the
MSE and it is defined in the rgp package. The auxiliary fwrapper function was
created for an easier use of apply over f, since f receives two arguments while
a row from domain is one vector with two elements. After running the genetic
programming, the best solution is presented. Also, a PDF file is created, related
with a two dimensional plot, where the x-axis denotes all 100 points and the y-axis
the rastrigin and genetic programming best solution output values. The result of
running the demonstration file (gp-rastrigin.R) is:1

> source("gp-rastrigin.R")
STARTING genetic programming evolution run (Age/Fitness/

Complexity Pareto GP search-heuristic) ...
evolution step 100, fitness evaluations: 1980, best fitness:

1459.126753, time elapsed: 3.37 seconds
evolution step 200, fitness evaluations: 3980, best fitness:

317.616080, time elapsed: 7.14 seconds
evolution step 300, fitness evaluations: 5980, best fitness:

205.121919, time elapsed: 12.09 seconds
evolution step 400, fitness evaluations: 7980, best fitness:

98.718003, time elapsed: 18.1 seconds
evolution step 500, fitness evaluations: 9980, best fitness:

87.140058, time elapsed: 23.73 seconds
evolution step 600, fitness evaluations: 11980, best fitness:
87.140058, time elapsed: 29.62 seconds

evolution step 700, fitness evaluations: 13980, best fitness:
87.140058, time elapsed: 35.31 seconds

evolution step 800, fitness evaluations: 15980, best fitness:
87.140058, time elapsed: 41.28 seconds

evolution step 900, fitness evaluations: 17980, best fitness:
87.074739, time elapsed: 46.98 seconds

Genetic programming evolution run FINISHED after 954 evolution
steps, 19060 fitness evaluations and 50.05 seconds.

best solution (f= 87.07474):
function (x1, x2)
x2 * x2 + (1.3647488967524 + x1 * x1 + -0.82968488587336 +

1.3647488967524 + 1.3647488967524 + 1.3647488967524 +
1.3647488967524 + 1.3647488967524 + 1.59224941702801 +
1.3647488967524 + 1.3647488967524 + 1.3647488967524 +
1.3647488967524 + 1.3647488967524)

After 50 s, the best obtained solution is x2
2 C x2

1 C 15:7748, corresponding to an
MSE value of 87. Figure 5.11 shows the created plot, revealing an interesting fit.
It should be noted that the final solution (x2

2 C x2
1 C 15:7748) was obtained by

performing a manual “cleaning” of the returned symbolic expression. Such post-
processing (using manual or automatic techniques) is a common task when human
understandable knowledge is required.

1These results were achieved with rgp version 0.3-4 and later rgp versions might produce
different results.

5.9 Command Summary 97

0 20 40 60 80 100

20
30

40
50

60
70

points

fu
nc

tio
n

va
lu

es

rastrigin
GP function

Fig. 5.11 Comparison of rastrigin function and best solution given by the genetic programming

5.9 Command Summary

CEDA() Implement EDAs based on multivariate copulas (package
copulaedas)

constantFactorySet() Genetic programming set of constants (package rgp)

copulaedas Package for EDAs based on copulas

DEoptim Package for differential evolution

DEoptim() Differential evolution algorithm (package DEoptim)

DEoptim.control() Differential evolution control parameters (package DEoptim)

edaRun() EDA optimization algorithm (package copulaedas)

functionSet() Genetic programming set of functions (package rgp)

genalg Package for genetic and evolutionary algorithms

geneticProgramming Genetic programming algorithm (package rgp)

gray() Returns a vector of gray colors from a vector of gray levels

inputVariableSet() Genetic programming set of variables (package rgp)

mse() Mean squared error (package rgp)

mutateSubtree() Random subtree mutation (package rgp)

plot.DEoptim() Plot differential evolution result (package DEoptim)

plot.rbga() Plot genetic/evolutionary algorithm result (package genalg)

pso Package for particle swarm optimization

pso() Particle swarm optimization algorithm (package pso)

rbga() Evolutionary algorithm (package genalg)

rbga.bin() Genetic algorithm (package genalg)

rgp Package for genetic programming

show() Show an object

98 5 Population Based Search

summary.DEoptim() Summarize differential evolution result (package DEoptim)

summary.rbga() Summarize genetic/evolutionary algorithm result (package
genalg)

suppressWarnings() Evaluates its expression and ignores all warnings

try Runs an expression that might fail and handles error-recovery

VEDA() Implement EDAs based on vines (package copulaedas)

vignette() View a particular vignette or list available ones

5.10 Exercises

5.1. Apply a genetic algorithm to optimize the binary max sin task with D D 16

(from Exercise 4.2), using a population size of 20, elitism of 1, and maximum of
100 iterations. Show the best solution and fitness value.

5.2. Consider the eggholder function (D D 2):

f D �.x2 C 47/ sin .
p
jx2 C x1=2C 47j � x1 sin .

p
jx1 � x2 C 47j/ (5.3)

Adapt the code of file compare2.R (Sect. 5.6) such that three methods are
compared to minimize the eggholder task: Monte Carlo search (Sect. 3.4), particle
swarm optimization (SPSO 2011), and EDA (DVEDA). Use ten runs for each
method, with a maximum number of evaluations set to MAXFN=1000 and solutions
searched within the range [�512,512]. Consider the percentage of successes below
�950. For the population based methods, use a population size of NP D 20 and
maximum number of iterations of maxit D 50.

5.3. Consider the original bag prices task (D D 5, Sect. 1.7) with a new hard
constraint: x1 > x2 > x3 > x4 > x5. Adapt the code of Sect. 5.7 in order to
compare death penalty and repair constraint handling strategies using an EDA of
type UMDA. Hint: consider a simple repair solution that reorders each infeasible
solution into a feasible one.

5.4. Approximate the eggholder function of Exercise 5.2 using a genetic program-
ming method with a population size of 100 and other default parameters. The genetic
programming building blocks should be defined as:

• function symbols—use the same functions/operators that appear at the eggholder
equation;

• constants—use a random sampling over the eggholder constants {2,47}; and
• variables—two inputs (x1 and x2).

Set the domain input with 500 samples randomly generated within the range
Œ�512; 512� and stop the algorithm after 20 s.

Chapter 6
Multi-Objective Optimization

6.1 Introduction

In previous chapters, only single objective tasks were addressed. However, multiple
goals are common in real-world domains. For instance, a company typically desires
to increase sales while reducing production costs. Within its marketing department,
the goal might include maximizing target audiences while minimizing the marketing
budget. Also, within the production department, the same company might want to
maximize the manufactured items, in terms of both quality and production numbers,
while minimizing production time, costs, and waste of material. Often, the various
objectives can conflict, where gaining in one goal involves losing in another one.
Thus, there is a need to set the right trade-offs.

To handle multi-objective tasks, there are three main approaches (Freitas 2004):
weighted-formula, lexicographic and Pareto front, whose R implementation details
are discussed in the next sections, after presenting the demonstrative tasks selected
for this chapter.

6.2 Multi-Objective Demonstrative Problems

This section includes three examples of simple multi-objective tasks that
were selected to demonstrate the methods presented in this chapter. Given an
D-dimensional variable vector x D fx1; : : : ; xDg the goal is to optimize a set
of m objective functions ff1.x1; : : : ; xD/; : : : ; fm.x1; : : : ; xD/g. To simplify the
demonstrations, only two m D 2 objective functions are adopted for each task
(an m D 3 example is shown in Sect. 7.6).

The binary multi-objective goal consists in maximizing both functions of the set
ffsum of bits.x1; : : : ; xD/; fmax sin.x1; : : : ; xD/g, where xi 2 f0; 1g and the functions
are defined in Eqs. (1.1) and (1.2). As explained in Sect. 1.7 (see also Fig. 1.3),

© Springer International Publishing Switzerland 2014
P. Cortez, Modern Optimization with R, Use R!, DOI 10.1007/978-3-319-08263-9__6

99

100 6 Multi-Objective Optimization

f1

x1

x2

f2

x1

x2

Fig. 6.1 Example of the FES1 f1 (left) and f2 (right) task landscapes (D D 2)

when D D 8 the optimum solutions are set at different points of the search space
(x=(1,1,1,1,1,1,1,1) for f1 and x=(1,0,0,0,0,0,0,0) for f2), thus a trade-off is needed.

The bag prices integer multi-objective goal is set by maximizing f1 and
minimizing f2, where f1 D fbag prices and f2 DPD

iD1 sales.xi /, i.e., the number of
bags that the factory will produce (see Sect. 1.7).

Finally, the real value multi-objective goal is defined in terms of the FES1
benchmark (Huband et al. 2006), which involves minimizing both functions of the
set:

ff1 D
DX

iD1

jxi � exp ..i=D/2/=3j0:5; f2 D
DX

iD1

.xi � 0:5 cos.10�i=D/ � 0:5/2g
(6.1)

where xi 2 Œ0; 1�. As shown in Fig. 6.1, the minimum solutions are set at distinct
points of the search space.

The R code related with the three multi-optimization tasks is presented in file
mo-tasks.R:

mo-tasks.R file

binary multi-optimization goal:
sumbin=function(x) (sum(x))
intbin=function(x) sum(2^(which(rev(x==1))-1))
maxsin=function(x) # max sin (explained in Chapter 3)
{ D=length(x);x=intbin(x)
return(sin(pi*(as.numeric(x))/(2

^D))) }

integer multi-optimization goal:
profit=function(x) # x - a vector of prices
{ x=round(x,digits=0) # convert x into integer

6.3 Weighted-Formula Approach 101

s=sales(x) # get the expected sales
c=cost(s) # get the expected cost
profit=sum(s*x-c) # compute the profit
return(profit)

}
cost=function(units,A=100,cpu=35-5*(1:length(units)))
{ return(A+cpu*units) }
sales=function(x,A=1000,B=200,C=141,

m=seq(2,length.out=length(x),by=-0.25))
{ return(round(m*(A/log(x+B)-C),digits=0))}
produced=function(x) sum(sales(round(x)))

real value FES1 benchmark:
fes1=function(x)
{ D=length(x);f1=0;f2=0
for(i in 1:D)

{ f1=f1+abs(x[i]-exp((i/D)^2)/3)^0.5
f2=f2+(x[i]-0.5*cos(10*pi/D)-0.5)

^2
}

return(c(f1,f2))
}

6.3 Weighted-Formula Approach

The weighted-formula approach, also known as priori approach, has the advantage
of being the simplest multi-objective solution, thus it is more easy to implement.
This approach involves first assigning weights to each goal and then optimizing a
quality Q measure that is typically set using an additive or multiplicative formula:

Q D w1 � g1 C w2 � g2 C : : :C wn � gn

Q D g
w1

1 � g
w2

1 � : : : � gwn
n

(6.2)

where g1; g2; : : : ; gn denote the distinct goals and w1; w2; : : : ; wn the assigned
weights.

As discussed in Freitas (2004) and Konak et al. (2006), there are several
disadvantages with the weighted-formula approach. First, setting the ideal weights
is often difficult and thus weights tend to be set ad-hoc (e.g., based on intuition).
Second, solving a problem to optimize Q for a particular vector w yields a single
solution. This means that optimizing with a different combination of weights
requires the execution of a new optimization procedure. Third, even if the weights
are correctly defined, the search will miss trade-offs that might be interesting for
the user. In particular, the linear combination of weights (as in the additive formula)
limits the search for solutions in a non-convex region of the Pareto front (Fig. 6.2).

102 6 Multi-Objective Optimization

s1

objective 1

linear
combination

non−dominated solutions

dominated
solutions
pareto front

obj. 2

pareto front
non−dominated solutions

objective 1

linear
combination

obj. 2
dominated solutions

s2

Fig. 6.2 Examples of convex (left) and non-convex (right) Pareto fronts, where the goal is to
minimize both objectives 1 and 2

To solve the first two weighted-formula limitations, enhanced optimization
variants have been proposed. One interesting example is the weight-based genetic
algorithm (WBGA), which encodes a different weight vector into each solution of
the genetic population (Konak et al. 2006).

In this section, a pure weighted-formula approach is adopted for the three
tasks presented in Sect. 6.2. Five additive weight combinations are tested: w1 D
.1:00; 0:00/, w2 D .0:75; 0:25/, w3 D .0:50; 0:50/, w4 D .0:75; 0:25/, and
w5 D .0:00; 1:00/. It should be noted that in all three tasks, there are different scales
for each of the objectives (e.g., [0,8] range for fsum of bits and [0,1] for fmax sin). Thus,
the optimization method will tend to improve more the objective associated with the
largest scale, unless more differentiated weights are used. Nevertheless, for the sake
of simplicity, the same weight combinations are used for all three benchmarks.

As the search engine, genetic and evolutionary algorithms are adopted, as
implemented in the genalg package. The advantage of this package is that it
can handle both binary (rbga.bin function) and real value (rbga function)
representations. A distinct run of the optimization algorithm is executed for each
of the five weight combinations. The population size is set to 20 individuals for
bag prices and FES1 multi-objective tasks, while a smaller population size of 12 is
used for the simpler binary multi-objective problem. The weighted-formula R code
is presented in file wf-test.R:

wf-test.R file

source("mo-tasks.R") # load multi-optimization tasks
library(genalg) # load genalg package

set.seed(12345) # set for replicability

step=5 # number of weight combinations
w=matrix(ncol=2,nrow=step) # weight combinations
w[,1]=seq(1,0,length.out=step)
w[,2]=1-w[,1]

print("Weight combinations:")
print(w)

6.3 Weighted-Formula Approach 103

--- binary task:
D=8 # 8 bits
eval=function(x) return(W[1]*sumbin(x)+W[2]*maxsin(x))
cat("binary task:\n")
for(i in 1:step)
{
W= -w[i,] # rbga.bin minimization goal: max. f1 and max. f2
G=rbga.bin(size=D,popSize=12,iters=100,zeroToOneRatio=1,

evalFunc=eval,elitism=1)
b=G$population[which.min(G$evaluations),] # best individual
cat("w",i,"best:",b)
cat(" f=(",sumbin(b),",",round(maxsin(b),2),")","\n",sep="")

}

--- integer task:
D=5 # 5 bag prices
eval=function(x) return(W[1]*profit(x)+W[2]*produced(x))
cat("integer task:\n")
res=matrix(nrow=nrow(w),ncol=ncol(w)) # for CSV files
for(i in 1:step)
{
W=c(-w[i,1],w[i,2]) # rbga min. goal: max. f1 and min. f2
G=rbga(evalFunc=eval,stringMin=rep(1,D),stringMax=rep(1000,D),

popSize=20,iters=100)
b=round(G$population[which.min(G$evaluations),]) # best
cat("w",i,"best:",b)
cat(" f=(",profit(b),",",produced(b),")","\n",sep="")
res[i,]=c(profit(b),produced(b))

}
write.table(res,"wf-bag.csv",

row.names=FALSE,col.names=FALSE,sep=" ")
--- real value task:
D=8 # dimension
eval=function(x) return(sum(W*fes1(x)))
cat("real value task:\n")
for(i in 1:step)
{
W=w[i,] # rbga minimization goal
G=rbga(evalFunc=eval,stringMin=rep(0,D),stringMax=rep(1,D),

popSize=20,iters=100)
b=G$population[which.min(G$evaluations),] # best solution
cat("w",i,"best:",round(b,2))
cat(" f=(",round(fes1(b)[1],2),",",round(fes1(b)[2],2),")",

"\n",sep="")
res[i,]=fes1(b)

}
write.table(res,"wf-fes1.csv",

row.names=FALSE,col.names=FALSE,sep=" ")

The distinct weight combinations are stored in matrix w. Given that the genalg
package performs a minimization, the f 0.s/ D �f .s/ transformation (Sect. 1.4)
is adopted when the objective requires a maximization and thus the auxiliary W
vector is used to multiple the weight values by �1 when needed. After executing

104 6 Multi-Objective Optimization

each optimization run, the code displays the best evolved solution and also the two
objective evaluation values. For comparison with other multi-objective approaches,
the best evaluation values are stored into CSV files (using the write.table
function) for the last two tasks. The execution result is:

> source("wf-test.R")
[1] "Weight combinations:"

[,1] [,2]
[1,] 1.00 0.00
[2,] 0.75 0.25
[3,] 0.50 0.50
[4,] 0.25 0.75
[5,] 0.00 1.00
binary task:
w 1 best: 1 1 1 1 1 1 1 1 f=(8,0.01)
w 2 best: 1 1 1 1 1 1 1 1 f=(8,0.01)
w 3 best: 1 1 1 1 1 1 1 1 f=(8,0.01)
w 4 best: 0 1 1 1 1 1 1 1 f=(7,1)
w 5 best: 0 1 1 1 1 1 1 1 f=(7,1)
integer task:
w 1 best: 420 362 419 367 415 f=(43165,117)
w 2 best: 425 433 408 390 410 f=(43579,112)
w 3 best: 412 390 407 305 446 f=(43435,120)
w 4 best: 399 418 438 405 372 f=(43499,114)
w 5 best: 986 969 969 913 991 f=(4145,5)
real value task:
w 1 best: 0.32 0.35 0.37 0.42 0.51 0.57 0.74 0.91 f=(0.92,1.44)
w 2 best: 0.36 0.33 0.38 0.43 0.51 0.58 0.68 0.91 f=(0.87,1.41)
w 3 best: 0.36 0.34 0.39 0.43 0.5 0.58 0.49 0.89 f=(1.11,1.21)
w 4 best: 0.33 0.35 0.39 0.42 0.49 0.36 0.29 0.25 f=(2.3,0.4)
w 5 best: 0.18 0.15 0.16 0.23 0.16 0.16 0.15 0.17 f=(4.61,0.01)

As expected, the obtained results show that in general the genetic and evolutionary
algorithms manage to get the best f1 values for the w1 D .1:00; 0:00/ weight
combination and best f2 values for the w5 D .0:00; 1:00/ vector of weights. The
quality of the remaining task evolved solutions (i.e., for bag prices and FES1) will
be discussed in Sect. 6.5.

6.4 Lexicographic Approach

Under the lexicographic approach, different priorities are assigned to different
objectives, such that the objectives are optimized in their priority order (Freitas
2004). When two solutions are compared, first the evaluation measure for the
highest-priority objective is compared. If the first solution is significantly better
(e.g., using a given tolerance value) than the second solution, then the former is
chosen. Else, the comparison is set using the second highest-priority objective. The
process is repeated until a clear winner is found. If there is no clear winner, then the
solution with the best highest-priority objective can be selected.

6.4 Lexicographic Approach 105

In Freitas (2004), the advantages and disadvantages of the lexicographic
approach are highlighted. When compared with the weighted-formula, the
lexicographic approach has the advantage of avoiding the problem of mixing non-
commensurable criteria in the same formula, as it treats each criterion separately.
Also, if the intention is to just to compare several solutions, then the lexicographic
approach is easier when compared with the Pareto approach. However, the
lexicographic approach requires the user to a priori define the criteria priorities
and tolerance thresholds, which similarly to the weighted-formula are set ad-hoc.

Given that in previous section an evolutionary/genetic algorithm was adopted,
the presented lexicographic implementation also adopts the same base algorithm.
In particular, the rbga.bin() function code is adapted by replacing the proba-
bilistic (roulette wheel) selection with a tournament selection. This operator works
by randomly sampling k individuals (solutions) from the population and then selects
the best n individuals (Goldberg and Deb 1991). The advantage of using tournament
is that there is no need for a single fitness value, since the selection of what is the
“best” can be performed under a lexicographic comparison with the k solutions.
It should be noted that the same tournament function could be used to get other
multi-objective optimization adaptations. For instance, a lexicographic hill climbing
could easily be achieved by setting the best function of Algorithm 2 as the same
tournament operator (in this case by comparing k D 2 solutions).

The lexicographic genetic algorithm R code is provided in the file lg-ga.R:

lg-ga.R file

lexicographic comparison of several solutions:
x - is a matrix with several objectives at each column
and each row is related with a solution
lexibest=function(x) # assumes LEXI is defined
{
size=nrow(x); m=ncol(x)
candidates=1:size
stop=FALSE; i=1
while(!stop)
{
F=x[candidates,i] # i-th goal
minFID=which.min(F) # minimization goal is assumed
minF=F[minFID]
compute tolerance value
if(minF>-1 && minF<1) tolerance=LEXI[i]
else tolerance=abs(LEXI[i]*minF)
I=which((F-minF)<=tolerance)
if(length(I)>0) # at least one candidate
candidates=candidates[I] # update candidates

else stop=TRUE
if(!stop && i==m) stop=TRUE
else i=i+1

}
if(length(candidates)>1)
{ # return highest priority goal if no clear winner:
stop=FALSE; i=1

106 6 Multi-Objective Optimization

while(!stop)
{
minF=min(x[candidates,i])
I=which(x[candidates,i]==minF)
candidates=candidates[I]
if(length(candidates)==1||i==m) stop=TRUE
else i=i+1

}
remove (any) extra duplicate individuals:
candidates=candidates[1]

}
return lexibest:
return(candidates)

}

compare k randomly selected solutions from Population:
returns n best indexes of Population (decreasing order)
m is the number of objectives
tournament=function(Population,evalFunc,k,n,m=2)
{
popSize=nrow(Population)
PID=sample(1:popSize,k) # select k random tournament solutions
E=matrix(nrow=k,ncol=m) # evaluations of tournament solutions
for(i in 1:k) # evaluate tournament

E[i,]=evalFunc(Population[PID[i],])

return best n individuals:
B=lexibest(E); i=1; res=PID[B] # best individual
while(i<n) # other best individuals
{
E=E[-B,];PID=PID[-B] # all except B
if(is.matrix(E)) B=lexibest(E)
else B=1 # only 1 row
res=c(res,PID[B])
i=i+1

}
return(res)

}

lexicographic adapted version of rbga.bin:
this function is almost identical to rbga.bin except that
the code was simplified and a lexicographic tournament is

used
instead of roulette wheel selection
lrbga.bin=function(size=10, suggestions=NULL, popSize=200,

iters=100, mutationChance=NA, elitism=NA,
zeroToOneRatio=10,evalFunc=NULL)

{
vars=size
if(is.na(mutationChance)) { mutationChance=1/(vars + 1) }
if(is.na(elitism)) { elitism=floor(popSize/5)}
if(!is.null(suggestions))
{

6.4 Lexicographic Approach 107

population=matrix(nrow=popSize, ncol=vars)
suggestionCount=dim(suggestions)[1]
for(i in 1:suggestionCount)
population[i,]=suggestions[i,]

for(child in (suggestionCount + 1):popSize)
{
population[child,]=sample(c(rep(0, zeroToOneRatio),1),

vars,rep=TRUE)
while(sum(population[child,])==0)

population[child,]=sample(c(rep(0, zeroToOneRatio),
1),vars,rep=TRUE)

}
}

else
{
population=matrix(nrow=popSize, ncol=vars)
for(child in 1:popSize)
{
population[child,]=sample(c(rep(0, zeroToOneRatio),1),

vars,rep=TRUE)
while (sum(population[child,]) == 0)
population[child,]=sample(c(rep(0, zeroToOneRatio),1),

vars,rep=TRUE)
}

}
main GA cycle:
for(iter in 1:iters)
{
newPopulation=matrix(nrow=popSize, ncol=vars)
if(elitism>0) # applying elitism:
{
elitismID=tournament(population,evalFunc,k=popSize,n=

elitism)
newPopulation[1:elitism,]=population[elitismID,]
}

applying crossover:
for(child in (elitism + 1):popSize)
{
very new code inserted here :
pID1=tournament(population,evalFunc=evalFunc,k=2,n=1)
pID2=tournament(population,evalFunc=evalFunc,k=2,n=1)
parents=population[c(pID1,pID2),]
end of very new code
crossOverPoint=sample(0:vars, 1)
if(crossOverPoint == 0)
newPopulation[child,]=parents[2,]

else if(crossOverPoint == vars)
newPopulation[child,]=parents[1,]

else
{
newPopulation[child,]=c(parents[1,][1:crossOverPoint],

parents[2,][(crossOverPoint+1):vars])
while(sum(newPopulation[child,])==0)

108 6 Multi-Objective Optimization

newPopulation[child,]=sample(c(rep(0,zeroToOneRatio
),1),vars,rep=TRUE)

}
}

population=newPopulation # store new population
if(mutationChance>0) # applying mutations:
{
mutationCount=0
for(object in (elitism+1):popSize)
{
for(var in 1:vars)
{
if(runif(1)< mutationChance)
{
population[object, var]=sample(c(rep(0,

zeroToOneRatio),1),1)
mutationCount=mutationCount+1
}

}
}

}
} # end of GA main cycle

result=list(type="binary chromosome",size=size,popSize=popSize,
iters=iters,suggestions=suggestions,
population=population,elitism=elitism,
mutationChance=mutationChance)

return(result)
}

The new lrbga.bin() is a simplified version of the rbga.bin() function
(which is accessible by simple typing > rbga.bin in the R console), where all
verbose and monitoring code has been removed. The most important change is that
before applying the crossover a tournament with k=2 individuals is set to select the
two parents. It should be noted that k D 2 is the most popular tournament strategy
(Michalewicz and Fogel 2004). The same tournament operator is also used to select
the elitism individuals from the population (in this case with: k D Np – population
size; and n D E – elitism). The tournament() function returns the n best
individuals, according to a lexicographic comparison. Under this implementation,
the evaluation function needs to return vector with the fitness values for all m

objectives.
The tournament() assumes the first objective as the highest priority function,

the second objective is considered the second highest priority function, and so on.
It should be noted that tournament() uses the is.matrix() R function,
which returns true if x is a matrix object. The lexicographic comparison is only
executed when there are two or more solutions (which occurs when x object
is a matrix). Function lexibest() implements the lexicographic comparison,
returning the best index of the tournament population. This function assumes that
the tolerance thresholds are defined in object LEXI. Also, these thresholds are
interpreted as percentages if�1 < fi < 1 for the i -th objective, else absolute values
are used. Working from the highest priority to the smallest one, the tournament

6.4 Lexicographic Approach 109

population is reduced on a step by step basis, such that on each iteration only the best
solutions within the tolerance range for the i -th objective are selected. If there is no
clear winner, lexibest() selects the best solution, as evaluated from the highest
to the smallest priority objective.

The optimization of the binary multi-objective goal is coded in file lg-test.R,
using a tolerance of 20 % for both objectives and the same other parameters that
were used in Sect. 6.3:

lg-test.R file

source("mo-tasks.R") # load multi-optimization tasks
source("lg-ga.R") # load lrgba.bin
set.seed(12345) # set for replicability

LEXI=c(0.2,0.2) # tolerance 20% for each goal
cat("tolerance thresholds:",LEXI,"\n")

--- binary task:
D=8 # 8 bits
eval: transform binary objectives into minimization goal
returns a vector with 2 values, one per objective:
eval=function(x) return(c(-sumbin(x),-maxsin(x)))
popSize=12
G=lrbga.bin(size=D,popSize=popSize,iters=100,zeroToOneRatio=1,

evalFunc=eval,elitism=1)
print("Ranking of last population:")
B=tournament(G$population,eval,k=popSize,n=popSize,m=2)
for(i in 1:popSize)
{
x=G$population[B[i],]
cat(x," f=(",sumbin(x),",",round(maxsin(x),2),")","\n",sep="")

}

Given that there is not a single best solution, after executing the lexicographic
genetic algorithm, the code shows a ranking (according to the lexicographic
criterion) of all individuals from last population:

> source("lg-test.R")
tolerance thresholds: 0.2 0.2
[1] "Ranking of last population:"
01111111 f=(7,1)
01111111 f=(7,1)
01111111 f=(7,1)
01111111 f=(7,1)
01111111 f=(7,1)
01111111 f=(7,1)
01111111 f=(7,1)
01110111 f=(6,0.99)
01011111 f=(6,0.92)
10101111 f=(6,0.84)
10101111 f=(6,0.84)
01010111 f=(5,0.88)

110 6 Multi-Objective Optimization

With a single run, the lexicographic algorithm is capable of finding the same
.f1; f2/ D .7; 1/ solution that belongs to the Pareto front (see next section).

6.5 Pareto Approach

A solution s1 dominates (in the Pareto sense) a solution s2 if s1 is better than s2

in one objective and as least as good as s2 in all other objectives. A solution si is
non-dominated when there is no solution sj that dominates si and the Pareto front
contains all non-dominated solutions (Luke 2012). An example situation is shown
in the left of Fig. 6.1, where s1 is a non-dominated solution and part of the Pareto
front, while s2 is a dominated one (both solutions have the same f2 value but s1

presents a better f1). Assuming this concept, Pareto multi-objective optimization
methods return a set of non-dominated solutions (from the Pareto front), rather than
just a single solution.

When compared with previous approaches (weighted-formula and lexico-
graphic), the Pareto multi-objective optimization presents several advantages
(Freitas 2004). It is a more natural method, since a “true” multi-objective approach is
executed, providing to the user an interesting set of distinct solutions and letting the
user (a posteriori) to decide which one is best. Moreover, under a single execution,
the method optimizes the distinct objectives, thus no multiple runs are required
to get the Pareto front points. In addition, there is no need to set ad-hoc weights
or tolerance values. The drawback of the Pareto approach is that a larger search
space needs to be explored and tracked, thus Pareto based methods tend to be more
complex than single-objective counterparts.

Considering that Pareto based methods need to keep track of a population of
solutions, evolutionary algorithms have become a natural and popular solution
to generate Pareto optimal solutions. Examples of standard evolutionary multi-
objective approaches include the strength Pareto evolutionary algorithm 2 (SPEA-2)
and non-dominated sorting genetic algorithm-II (NSGA-II) (Deb 2001). Multi-
objective evolutionary algorithms (MOEA) often use Pareto-based ranking schemes,
where individuals in the Pareto front are rank 1, then the front solutions are removed
and the individuals from the new front are rank 2, and so on.

The NSGA-II is implemented in the mco package and thus it is adopted in
this section. NSGA-II is an evolutionary algorithm variant specifically designed
for multi-objective optimization and that uses three useful concepts: Pareto front
ranking, elitism, and sparsity. The full NSGA-II algorithmic details can be found
in Deb (2001) and Luke (2012), although the skeleton of the algorithm is similar
to Algorithm 5. The initial population P is randomly generated and then a cycle
is executed until a termination criterion is met. Within each cycle, NSGA-II uses
a Pareto ranking scheme to assign a ranking number to each individual of the
population. An elitism scheme is also adopted, storing an archive (PE) of the
best individuals. The elitism individuals are selected taking into account their rank
number and also their sparsity. An individual is in a sparse region if the neighbor

6.5 Pareto Approach 111

individuals are not too close to it. To measure how close two points are, a distance
metric is used, such as Manhattan distance, which is defined by the sum of all m

objective differences between the two points. Then, a new population (Children
breed.PE/) is created, often by using a tournament selection (e.g., with k D 2),
crossover, and mutation operators. The next population is set as the union of the
archive (P Children [PE) and a new cycle is executed over P .

In the mco package, NSGA-II is implemented with the nsga2 function.
The package also contains other functions, such as related with multi-objective
benchmarks (e.g., belegundu()) and Pareto front (e.g., paretoSet()). The
useful nsga2() function performs a minimization of vectors of real numbers and
includes the main parameters:

• fn—function to be minimized (should return a vector with the several objective
values);

• idim—input dimension (D);
• odim—output dimension (number of objective functions, m);
• ...—extra arguments to be passed fn;
• lower.bounds, upper.bounds—lower and upper bounds;
• popsize—population size (NP , default is 100);
• generations—number of generations (maxit , default is 100) or a vector;
• cprob—crossover probability (default is 0.7); and
• mprob—mutation probability (default is 0.2).

The function returns a list with the final population (if generations is a number),
with components:

• $par—the population values;
• $value—matrix with the best objective values (in columns) for the last

population individuals (in rows); and
• $pareto.optimal—a boolean vector that indicates which individuals from

the last generation belong to the Pareto front.

When generations is a vector, a vector list is returned where the i-th element
contains the population after generations[i] iterations (an R code example is
shown in the next presented code).

File ngsa2-test.R codes the optimization of the three multi-objective tutorial
tasks under the NSGA-II algorithm:

nsga2-test.R file

source("mo-tasks.R") # load multi-optimization tasks
library(mco) # load mco package

set.seed(12345) # set for replicability
m=2 # two objectives

--- binary task:
D=8 # 8 bits
eval: transform binary objectives into minimization goal

112 6 Multi-Objective Optimization

round(x) is used to convert real number to 0 or 1 values
eval=function(x) c(-sumbin(round(x)),-maxsin(round(x)))
cat("binary task:\n")
G=nsga2(fn=eval,idim=D,odim=m,

lower.bounds=rep(0,D),upper.bounds=rep(1,D),
popsize=12,generations=100)

show last Pareto front
I=which(G$pareto.optimal)
for(i in I)
{
x=round(G$par[i,])
cat(x," f=(",sumbin(x),",",round(maxsin(x),2),")","\n",sep="")

}

--- integer task:
D=5 # 5 bag prices
eval: transform objectives into minimization goal
eval=function(x) c(-profit(x),produced(x))
cat("integer task:\n")
G=nsga2(fn=eval,idim=5,odim=m,

lower.bounds=rep(1,D),upper.bounds=rep(1000,D),
popsize=20,generations=1:100)

show best individuals:
I=which(G[[100]]$pareto.optimal)
for(i in I)
{
x=round(G[[100]]$par[i,])
cat(x," f=(",profit(x),",",produced(x),")","\n",sep=" ")

}
create PDF with Pareto front evolution:
pdf(file="nsga-bag.pdf",paper="special",height=5,width=5)
par(mar=c(4.0,4.0,0.1,0.1))
I=1:100
for(i in I)
{ P=G[[i]]$value # objectives f1 and f2
P[,1]=-1*P[,1] # show positive f1 values
color from light gray (75) to dark (1):
COL=paste("gray",round(76-i*0.75),sep="")
if(i==1) plot(P,xlim=c(-500,44000),ylim=c(0,140),

xlab="f1",ylab="f2",cex=0.5,col=COL)
Pareto=P[G[[i]]$pareto.optimal,]
sort Pareto according to x axis:
I=sort.int(Pareto[,1],index.return=TRUE)
Pareto=Pareto[I$ix,]
points(P,type="p",pch=1,cex=0.5,col=COL)
lines(Pareto,type="l",cex=0.5,col=COL)

}
dev.off()

create PDF comparing NSGA-II with WF:
pdf(file="nsga-bag2.pdf",paper="special",height=5,width=5)
par(mar=c(4.0,4.0,0.1,0.1))
NSGA-II best results:

6.5 Pareto Approach 113

P=G[[100]]$value # objectives f1 and f2
P[,1]=-1*P[,1] # show positive f1 values
Pareto=P[G[[100]]$pareto.optimal,]
sort Pareto according to x axis:
I=sort.int(Pareto[,1],index.return=TRUE)
plot(Pareto[I$ix,],xlim=c(-500,44000),ylim=c(0,140),

xlab="f1",ylab="f2",type="b",lwd=2,lty=1,pch=1)
weight-formula best results:
wf=read.table("wf-bag.csv",sep=" ")
I=sort.int(wf[,1],index.return=TRUE)
lines(wf[I$ix,],type="b",lty=2,lwd=2,pch=3)
legend("topleft",c("NSGA-II","weighted-formula"),

lwd=2,lty=1:2,pch=c(1,3))
dev.off()

--- real value task:
D=8 # dimension
cat("real value task:\n")
G=nsga2(fn=fes1,idim=D,odim=m,

lower.bounds=rep(0,D),upper.bounds=rep(1,D),
popsize=20,generations=1:100)

show best individuals:
I=which(G[[100]]$pareto.optimal)
for(i in I)
{
x=round(G[[100]]$par[i,],digits=2); cat(x)
cat(" f=(",round(fes1(x)[1],2),",",round(fes1(x)[2],2),")",

"\n",sep="")
}
create PDF with Pareto front evolution:
pdf(file="nsga-fes1.pdf",paper="special",height=5,width=5)
par(mar=c(4.0,4.0,0.1,0.1))
I=1:100
for(i in I)
{ P=G[[i]]$value # objectives f1 and f2
color from light gray (75) to dark (1):
COL=paste("gray",round(76-i*0.75),sep="")
if(i==1) plot(P,xlim=c(0.5,5.0),ylim=c(0,2.0),

xlab="f1",ylab="f2",cex=0.5,col=COL)
Pareto=P[G[[i]]$pareto.optimal,]
sort Pareto according to x axis:
I=sort.int(Pareto[,1],index.return=TRUE)
Pareto=Pareto[I$ix,]
points(P,type="p",pch=1,cex=0.5,col=COL)
lines(Pareto,type="l",cex=0.5,col=COL)

}
dev.off()

create PDF comparing NSGA-II with WF:
pdf(file="nsga-fes1-2.pdf",paper="special",height=5,width=5)
par(mar=c(4.0,4.0,0.1,0.1))
NSGA-II best results:
P=G[[100]]$value # objectives f1 and f2

114 6 Multi-Objective Optimization

Pareto=P[G[[100]]$pareto.optimal,]
sort Pareto according to x axis:
I=sort.int(Pareto[,1],index.return=TRUE)
plot(Pareto[I$ix,],xlim=c(0.5,5.0),ylim=c(0,2.0),

xlab="f1",ylab="f2",type="b",lwd=2,pch=1)
weight-formula best results:
wf=read.table("wf-fes1.csv",sep=" ")
I=sort.int(wf[,1],index.return=TRUE)
lines(wf[I$ix,],type="b",lty=2,lwd=2,pch=3)
legend("top",c("NSGA-II","weighted-formula"),

lwd=2,lty=1:2,pch=c(1,3))
dev.off()

The execution of function nsga2 is straightforward taking into account the
weight-formula and lexicographic examples. For the binary task, each solution
parameter (2 Œ0; 1�) is first rounded in order to transform it into a binary number,
since nsga2() only works with real values. After calling the algorithm, the code
shows all Pareto front solutions from the last generation. For each of the bag prices
and FES1 tasks, the code also creates two PDF files. The first PDF contains the
search evolution in terms of the f1 (x-axis) and f2 (y-axis) objectives, where
individual solutions are represented by small circle points and the Pareto front
solutions are connected with lines. Also, a varying color scheme is adopted to
plot the points and lines, ranging from light gray (first generation) to black (last
generation). The second PDF compares the best Pareto front optimized by NSGA-II
with the five solutions obtained by the five runs (with different weight combinations)
executed for the weighted-formula approach. The execution result is:

> source("nsga2-test.R")
binary task:
11111111 f=(8,0.01)
01111111 f=(7,1)
11111111 f=(8,0.01)
01111111 f=(7,1)
11111111 f=(8,0.01)
01111111 f=(7,1)
11111111 f=(8,0.01)
11111111 f=(8,0.01)
11111111 f=(8,0.01)
11111111 f=(8,0.01)
11111111 f=(8,0.01)
01111111 f=(7,1)
integer task:
414 403 406 431 394 f=(43736 , 114)
1000 996 993 989 988 f=(-500 , 0)
752 944 929 871 999 f=(12944 , 17)
813 649 872 971 791 f=(19729 , 28)
1000 934 979 942 996 f=(3204 , 4)
803 967 645 627 745 f=(22523 , 34)
414 403 406 503 473 f=(42955 , 107)
554 629 591 443 563 f=(38665 , 74)
775 721 510 621 782 f=(30643 , 50)
436 494 494 614 565 f=(40789 , 87)

6.5 Pareto Approach 115

900 934 979 942 996 f=(6684 , 8)
807 498 506 641 707 f=(32477 , 59)
790 749 595 877 789 f=(25273 , 37)
979 882 957 938 794 f=(8873 , 11)
997 787 634 985 728 f=(15792 , 24)
775 634 725 602 782 f=(29307 , 45)
997 788 647 991 728 f=(15328 , 23)
432 494 494 433 563 f=(42191 , 95)
620 654 680 393 608 f=(36061 , 67)
946 672 668 622 638 f=(26670 , 42)
real value task:
0.15 0.12 0.12 0.11 0.16 0.15 0.16 0.15 f=(4.85,0)
0.34 0.35 0.38 0.43 0.49 0.59 0.72 0.91 f=(0.45,1.44)
0.34 0.35 0.38 0.43 0.49 0.59 0.35 0.5 f=(1.58,0.7)
0.34 0.35 0.39 0.25 0.2 0.13 0.14 0.13 f=(3.46,0.15)
0.22 0.18 0.39 0.27 0.2 0.12 0.13 0.13 f=(4.11,0.09)
0.34 0.35 0.39 0.43 0.3 0.59 0.34 0.46 f=(2.02,0.57)
0.34 0.35 0.38 0.43 0.49 0.5 0.72 0.91 f=(0.67,1.37)
0.34 0.35 0.38 0.43 0.49 0.59 0.72 0.72 f=(0.82,1.19)
0.19 0.36 0.12 0.11 0.16 0.19 0.16 0.15 f=(4.36,0.05)
0.34 0.35 0.39 0.43 0.2 0.13 0.07 0.14 f=(3.13,0.23)
0.34 0.35 0.38 0.42 0.49 0.59 0.72 0.67 f=(0.92,1.13)
0.34 0.35 0.39 0.41 0.24 0.59 0.23 0.48 f=(2.24,0.53)
0.34 0.35 0.39 0.43 0.11 0.35 0.45 0.48 f=(2.5,0.46)
0.34 0.35 0.38 0.43 0.49 0.59 0.72 0.5 f=(1.03,0.98)
0.33 0.35 0.39 0.43 0.39 0.4 0.13 0.33 f=(2.56,0.37)
0.33 0.35 0.39 0.43 0.3 0.4 0.13 0.3 f=(2.7,0.33)
0.22 0.35 0.39 0.42 0.48 0.12 0.13 0.16 f=(3.01,0.29)
0.29 0.35 0.38 0.43 0.49 0.59 0.72 0.49 f=(1.22,0.96)
0.34 0.35 0.38 0.43 0.47 0.59 0.69 0.43 f=(1.29,0.89)
0.34 0.35 0.38 0.42 0.5 0.58 0.72 0.16 f=(1.33,0.85)

For the sake of simplicity, the comparison of NSGA-II results with other
approaches is performed using only a single NGSA-II run. It should be noted that
for a more robust comparison, several runs should be applied, as shown in Sects. 4.5
and 5.6.

The binary multi-objective task is quite simple given that the optimum Pareto
front only contains two solutions (found by NSGA-II): .f1; f2/ D .7; 1/ and
.f1; f2/ D .8; 0:01/. When compared with the weight-formula, the same best
solutions were obtained, although NSGA-II gets both solutions under the same run.

As shown in the left two graphs of Fig. 6.3, the bag prices and FES1 are more
complex multi-objective tasks when compared with the binary sum of bits/max
sin problem. Figure 6.3 reveals that the optimum Pareto fronts seem to have a
convex shape for both integer and real value optimization tasks, although the
final shape of such Pareto curve is only achieved during the last generations of
NSGA-II. The right plots of Fig. 6.3 confirm that NSGA-II optimizes within a
single run a more interesting Pareto front when compared with the results obtained
by the weighted-formula approach (and that requires executing 5 runs). For bag
prices, the weighted approach misses several interesting solutions outside the linear
combination (dashed line) extreme trade-offs. For FES1, the weighted approach is
not able to get quality f1 values when compared with NSGA-II results.

116 6 Multi-Objective Optimization

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

0 10000 20000 30000 40000

0
20

40
60

80
10

0
12

0
14

0

f1

f2

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

ll
l

l
l

l
l

l

l

l

l

l

l

l

l

0 10000 20000 30000 40000

0
20

40
60

80
10

0
12

0
14

0

f1
f2

l NSGA−II
weighted−formula

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

f1

f2

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l l

l
l

l

l
l

l

l
l

l

l

l

l
l

l

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

f1

f2

l NSGA−II
weighted−formula

Fig. 6.3 NSGA-II results for bag prices (top graphs) and FES1 (bottom graphs) tasks (left
graphs show the Pareto front evolution, while right graphs compare the best Pareto front with
the weighted-formula results)

6.6 Command Summary

belegundu() multi-objective belegundu test problem (package mco)

is.matrix() returns true if argument is a matrix

lrbga.bin lexicographic genetic algorithm (chapter file "lg-ga.R")

mco package for multi-criteria optimization algorithms

nsga2() NSGA-II algorithm (package mco)

paretoSet() returns the Pareto front from a mco result object (package mco)

tournament() tournament under a lexicographic approach (chapter file
"lg-ga.R")

6.7 Exercises 117

6.7 Exercises

6.1. Encode the lexicographic hill climbing function lhclimbing(), which
uses a lexicographic tournament with k D 2 to select the best solutions. Also,
demonstrate the usefulness of lhclimbing() to optimize the bag prices multi-
objective task under the tolerance vector .0:1; 0:1/, where the first priority is f1

(profit). Show the best solution.

6.2. Consider the FES2 task (Huband et al. 2006), where the goal is to minimize
three functions under the range xi 2 Œ0; 1�:

f1 DPD
iD1 .xi � 0:5 cos.10�i=D/ � 0:5/2

f2 DPD
iD1 jxi � sin2.i � 1/ cos2.i � 1/j0:5

f2 DPD
iD1 jxi � 0:25 cos.i � 1/ cos.2i � 2/ � 0:5j0:5

(6.3)

Using the scatterplot3d() function (package scatterplot3d),
compare the final Pareto front solutions when exploring two multi-optimization
approaches:

1. a WBGA, which encodes a different weight vector into each solution of the
genetic population (use function rgba); and

2. NSGA-II algorithm.

For both approaches, use a population size of 20,100 generations and a dimension
of D D 8.

Chapter 7
Applications

7.1 Introduction

Previous chapters have approached demonstrative optimization tasks that were
synthetically generated. The intention was to present a tutorial perspective and thus
more simpler tasks were approached. As a complement, this chapter addresses real-
world applications, where the data available is taken from a physical phenomena.
Exemplifying the optimization of real-world data in R is interesting for two main
reasons. First, physical phenomena may contain surprising or unknown features.
Second, it provides additional code examples of how to load real-world data into R.

This chapter addresses three real-world tasks that are discussed in the next
sections: traveling salesman problem (TSP), time series forecasting (TSF), and wine
quality classification.

7.2 Traveling Salesman Problem

The TSP is a classical combinatorial optimization. The goal is to find the cheapest
way of visiting all cities (just once) of a given map, starting in one city and ending
in the same city (Reinelt 1994). The complete traveling is known as Hamiltonian
cycle or TSP tour. The standard TSP assumes symmetric costs, where the cost of
visiting from city A to B is the same as visiting from B to A. This problem is non-
deterministic polynomial (NP)-complete, which means that there is no algorithm
capable of reaching the optimum solution in a polynomial time (in respect to n) for
all possible TSP instances of size n. While being a complex task, TSP has been
heavily studied in the last decades and a substantial improvement has been reached.
For example, in 1954 an instance with 49 cities was the maximum TSP size solved,
while in 2004 the record was established in 24,978 cities (Applegate et al. 2011).

Due to its importance, several optimization methods were devised to specifically
address the TSP, such as 2-opt and concorde. The former method is a local search

© Springer International Publishing Switzerland 2014
P. Cortez, Modern Optimization with R, Use R!, DOI 10.1007/978-3-319-08263-9__7

119

120 7 Applications

Fig. 7.1 Example of three
order mutation operators

displacementinsertionexchange

1 4 2 3 5 6 71 5 3 4 2 6 7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 3 4 5 2 6 7

1 2 3 4 5 6 7

algorithm that is tested in this section and starts with a random tour and then
exchanges two cities in order to avoid any two crossing paths until no improvements
are possible (Croes 1958). The latter is a recent advanced exact TSP solver for
symmetric TSPs and that is based on branch-and-cut approach (Applegate et al.
2001). Rather than competing with these TSP specific methods, in this section
the TSP is used as an application domain to show how ordered representations
can be handled by modern optimization methods. Also, it is used as example to
demonstrate how a Lamarckian evolution works.

An ordered representation is a natural choice for TSP since it assumes that
solutions can be generated as permutations of the symbols from an alphabet.
Without losing generality, the alphabet can be defined by the integers in the set
f1; 2; : : : ; ng (Rocha et al. 2001). Under this representation, the search space is nŠ for
a particular TSP instance of size n. The adaption of modern optimization methods
to this representation type requires assuring that generated solutions (e.g., created
in the initialization and change functions of Algorithm 1) are feasible, avoiding
missing integers and repeated values.

For single-state methods, several mutation operators can be adopted to change
solutions, such as (Michalewicz and Fogel 2004): exchange, insertion, and displace-
ment. The first operator swaps two randomly selected cities, the second operator
inserts a city into a random position and the third operator inserts a random subtour
into another position. Figure 7.1 shows examples of these order mutations.

For evolutionary approaches, there are several crossover methods that preserve
order, such as partially matched crossover (PMX), order crossover (OX), and cycle
crossover (CX) (Rocha et al. 2001). PMX first selects two cutting points and
the corresponding matching section is exchanged between the two parents, through
position-to-position exchange operations. The OX also exchanges two sections
between the parents but keeping an emphasis on the relative order of the genes
from both parents. Both operators are shown in Fig. 7.2, while CX is described in
Exercise 7.1.

In this section, two modern optimization methods are adapted to TSP: simulated
annealing and evolutionary algorithm (under two variants). Simulated annealing
uses a mutation operator to change solutions, while the evolutionary variants use
specialized crossover and mutation operators. Given that the genalg package is
not flexible in terms of accepting new genetic operators, the rbga.bin code was
adapted to accept user defined operators under the new oea function. The two
evolutionary variants include the standard algorithm and a Lamarckian evolution.
The latter employs a greedy approach, where a local learning procedure is used

7.2 Traveling Salesman Problem 121

parent 2

child 2

child 1

parent 1

PMX crossover
cut 1 cut 2

rearrange:

parent 2

child 2

child 1

parent 1

cut 2cut 1
rotated after cut 2:

cut 2 cut 1

OX crossover

1 2 3 4 5 6 7 1 2 3 4 5 6 74 3 x x x 5 7

1 2 3 4 5 7 6

4 3 2 1 6 7 5

4 5 2 1 6 7 3

1 6 3 4 5 7 2

6 7 1 2 3 4 5

7 5 4 3 2 1 6

7 2 1 6

7 3 4 5

4 3 2 1 6 5 7

4 3 2 1 6 7 5 1 2 x x x 7 6

Fig. 7.2 Example of PMX and OX crossover operators

first to improve a solution and then the improved solution replaces the population
original solution. The R code that implements the ordered representation operators
and Lamarckian evolution option is presented in file oea.R:

oea.R file

mutation operators:
exchange=function(s,N=length(s))
{ p=sample(1:N,2) # select two positions
temp=s[p[1]] # swap values
s[p[1]]=s[p[2]]
s[p[2]]=temp
return(s)

}

insertion=function(s,N=length(s),p=NA,i=NA)
{ if(is.na(p)) p=sample(1:N,1) # select a position
I=setdiff(1:N,p) # ALL except p
if(is.na(i)) i=sample(I,1) # select random place
if(i>p) i=i+1 # need to produce a change
I1=which(I<i) # first part
I2=which(I>=i) # last part
s=s[c(I[I1],p,I[I2])] # new solution
return(s)

}

displacement=function(s,N=length(s))
{ p=c(1,N)
select random tour different than s
while(p[1]==1&&p[2]==N) p=sort(sample(1:N,2))
I=setdiff(1:N,p[1]:p[2]) # ALL except p
i=sample(I,1) # select random place
I1=which(I<i) # first part
I2=which(I>=i) # last part
s=s[c(I[I1],p[1]:p[2],I[I2])]
return(s)

122 7 Applications

}

crossover operators:
partially matched crossover (PMX) operator:
m is a matrix with 2 parent x ordered solutions
pmx=function(m)
{
N=ncol(m)
p=sample(1:N,2) # two cutting points
c=m # children
for(i in p[1]:p[2])
{ # rearrange:
c[1,which(c[1,]==m[2,i])]=c[1,i]
crossed section:
c[1,i]=m[2,i]
rearrange:
c[2,which(c[2,]==m[1,i])]=c[2,i]
crossed section:
c[2,i]=m[1,i]

}
return(c)

}

order crossover (OX) operator:
m is a matrix with 2 parent x ordered solutions
ox=function(m)
{
N=ncol(m)
p=sort(sample(1:N,2)) # two cutting points
c=matrix(rep(NA,N*2),ncol=N)
keep selected section:
c[,p[1]:p[2]]=m[,p[1]:p[2]]
rotate after cut 2 (p[2]):
I=((p[2]+1):(p[2]+N))
I=ifelse(I<=N,I,I-N)
a=m[,I]
fill remaining genes:
a1=setdiff(a[2,],c[1,p[1]:p[2]])
a2=setdiff(a[1,],c[2,p[1]:p[2]])
I2=setdiff(I,p[1]:p[2])
c[,I2]=rbind(a1,a2)
return(c)

}

order (representation) evolutionary algorithm:
adapted version of rbga.bin that works with ordered vectors,
accepts used defined mutation and crossover operators and
accepts a Lamarckian evolution if evalFunc returns a list
note: assumes solution with values from the range 1,2,...,size
oea=function(size=10,suggestions=NULL,popSize=200,iters=100,

mutationChance=NA,
elitism=NA,evalFunc=NULL,
crossfunc=NULL,mutfunc=mutfunc,REPORT=0)

7.2 Traveling Salesman Problem 123

{
if(is.na(mutationChance)) { mutationChance=0.5 }
if(is.na(elitism)) { elitism=floor(popSize/5)}

population initialization:
population=matrix(nrow=popSize,ncol=size)
if(!is.null(suggestions))
{
suggestionCount=dim(suggestions)[1]
for(i in 1:suggestionCount)

population[i,] = suggestions[i,]
I=(suggestionCount+1):popSize ### new code

}
else I=1:popSize ### new code
for(child in I) ### new code

population[child,]=sample(1:size,size) ### new code

evaluate population:
evalVals = rep(NA, popSize)
main GA cycle:
for(iter in 1:iters)
{
evaluate population
for(object in 1:popSize)
{### new code
EF = evalFunc(population[object,])
if(is.list(EF)) # Lamarckian change of solution
{ population[object,]=EF$solution
evalVals[object] = EF$eval

}
else evalVals[object]=EF
end of new code
}

sortedEvaluations=sort(evalVals,index=TRUE)
if(REPORT>0 && (iter%%REPORT==0||iter==1))

cat(iter,"best:",sortedEvaluations$x[1],"mean:",mean(
sortedEvaluations$x),"\n")

sortedPopulation=matrix(population[sortedEvaluations$ix,],
ncol=size)

check elitism:
newPopulation=matrix(nrow=popSize,ncol=size)
if(elitism>0) # applying elitism:

newPopulation[1:elitism,]=sortedPopulation[1:elitism,]

very new code inserted here :
roulette wheel selection of remaining individuals
others=popSize-elitism
prob=(max(sortedEvaluations$x)-sortedEvaluations$x+1)
prob=prob/sum(prob) # such that sum(prob)==1

crossover with half of the population (if !is.null)
if(!is.null(crossfunc)) # need to crossover

124 7 Applications

half=round(others/2)
else half=0 # no crossover
if(!is.null(crossfunc))
{
for(child in seq(1,half,by=2))
{
selIDs=sample(1:popSize,2,prob=prob)
parents=sortedPopulation[selIDs,]
if(child==half)

newPopulation[elitism+child,]=crossfunc(parents)
[1,] # 1st child

else
newPopulation[elitism+child:(child+1),]=crossfunc(

parents) # two children
}

}
mutation with remaining individuals
for(child in (half+1):others)
{
selIDs=sample(1:popSize,1,prob=prob)
newPopulation[elitism+child,]=mutfunc(sortedPopulation[

selIDs,])
}

end of very new code
population=newPopulation # store new population

} # end of GA main cycle
result=list(type="ordered chromosome",size=size,
popSize=popSize, iters=iters,population=population,
elitism=elitism, mutationChance=mutationChance,
evaluations=evalVals)return(result)

}

File oea.R implements all mentioned order operations. Also, it defines the
new order evolutionary algorithm in oea(). This function uses the f1; 2; : : : ; ng
alphabet, where size=n and the first population is randomly generated using
the sample(1:size,size) command (except for what is included in object
suggestions). The oea code adopts a slight different approach for changing
individuals when compared with the genalg package, which uses crossover to
create new individuals and then mutates the created individuals (Algorithm 5). In the
order representation case, a mutation is applied to the whole solution and thus it
does not make sense to define a mutation probability for a particular gene (as in
genalg). Following approach similar to what is described in Rocha et al. (2001),
in oea() a pure roulette wheel selection is used to select the fittest individuals that
are used to generate new solutions. Then, half of the fittest individuals are crossed
and the remaining half are mutated (unless there is no crossover function, which in
this case all fittest individuals are mutated). The new arguments (when compared
with rbga.bin) are:

7.2 Traveling Salesman Problem 125

• crossfunc—crossover function (optional); if defined, half of the selected
individuals (except elitism) are generated by this operator;

• mutfunc—mutation function that changes the remaining (non crossed) selected
population individuals; and

• REPORT—shows the best and mean population fitness values every REPORT
generations.

The oea function introduces another useful feature when compared with genalg.
The evaluation function (evalFunc) can return the fitness value or a list with
two components: $eval—the fitness value; and $solution—the original or
an improved solution. When a list is returned, then it is assumed that the population
individual will be changed after its evaluation, under a Lamarckian evolution
scheme (explained in Sect. 1.6).

To demonstrate the simulated annealing and order evolutionary algorithm, the
Qatar TSP was selected and that includes 194 cities. Other national TSPs are
available at http://www.math.uwaterloo.ca/tsp/world/countries.html. The R code is
presented in file tsp.R:

tsp.R file

library(TSP) # load TSP package
library(RCurl) # load RCurl package
source("oea.R") # load ordered evolutionary algorithm

get Qatar - 194 cities TSP instance:
txt=getURL("http://www.math.uwaterloo.ca/tsp/world/qa194.tsp")
simple parse of txt object, removing header and last line:
txt=strsplit(txt,"NODE_COORD_SECTION") # split text into 2 parts
txt=txt[[1]][2] # get second text part
txt=strsplit(txt,"EOF") # split text into 2 parts
txt=txt[[1]][1] # get first text part
save data into a simple .csv file, sep=" ":
cat(txt,file="qa194.csv")
read the TSP format into Data
(first row is empty, thus header=TRUE)
get city Cartesian coordinates

Data=read.table("qa194.csv",sep=" ")
Data=Data[,3:2] # longitude and latitude
names(Data)=c("x","y") # x and y labels
N=nrow(Data) # number of cities

distance between two cities (EUC_2D-norm)
Eulidean distance rounded to whole number
D=dist(Data,upper=TRUE)
D[1:length(D)]=round(D[1:length(D)])
create TSP object from D:
TD=TSP(D)

set.seed(12345) # for replicability
cat("2-opt run:\n")

http://www.math.uwaterloo.ca/tsp/world/countries.html

126 7 Applications

PTM=proc.time() # start clock
R1=solve_TSP(TD,method="2-opt")
sec=(proc.time()-PTM)[3] # get seconds elapsed
print(R1) # show optimum
cat("time elapsed:",sec,"\n")

MAXIT=100000
Methods=c("SANN","EA","LEA") # comparison of 3 methods
RES=matrix(nrow=MAXIT,ncol=length(Methods))
MD=as.matrix(D)

overall distance of a tour (evaluation function):
tour=function(s)
{ # compute tour length:
EV<<-EV+1 # increase evaluations
s=c(s,s[1]) # start city is also end city
res=0
for(i in 2:length(s)) res=res+MD[s[i],s[i-1]]
store memory with best values:
if(res<BEST) BEST<<-res
if(EV<=MAXIT) F[EV]<<-BEST
only for hybrid method:
return tour
return(res)

}

move city index according to dir
mindex=function(i,dir,s=NULL,N=length(s))
{ res=i+dir #positive or negative jump
if(res<1) res=N+res else if(res>N) res=res-N
return(res)

}

local improvement and evaluation:
first tries to improve a solution with a
local search that uses domain knowledge (MD)
returns best solution and evaluation value
local_imp_tour=function(s,p=NA)
{ # local search
N=length(s); ALL=1:N
if(is.na(p)) p=sample(ALL,1) # select random position
I=setdiff(ALL,p)

current distance: p to neighbors
pprev=mindex(p,-1,N=N); pnext=mindex(p,1,N=N)
dpcur=MD[s[pprev],s[p]]+MD[s[p],s[pnext]]
new distance if p is remove to another position:
dpnew=MD[s[pprev],s[pnext]]

search for best insertion position for p:
ibest=0;best=-Inf
for(i in I) # extra cycle that increases computation
{

7.2 Traveling Salesman Problem 127

inext=mindex(i,1,N=N);iprev=mindex(i,-1,N=N)
if(inext==p) inext=pnext
if(iprev==p) iprev=pprev
dinew: new distance p to neighbors if p inserted:
current i distance without p:
if(i<p) {dinew=MD[s[iprev],s[p]]+MD[s[p],s[i]]

dicur=MD[s[iprev],s[i]]
}

else
{ dinew=MD[s[i],s[p]]+MD[s[p],s[inext]]
dicur=MD[s[i],s[inext]]

}
difference between current tour and new one:
dif=(dicur+dpcur)-(dinew+dpnew)

if(dif>0 && dif>best) # improved solution
{
best=dif
ibest=i

}
}

if(ibest>0) # insert p in i
s=insertion(s,p=p,i=ibest)

return(list(eval=tour(s),solution=s))
}

SANN:
cat("SANN run:\n")
set.seed(12345) # for replicability
s=sample(1:N,N) # initial solution
EV=0; BEST=Inf; F=rep(NA,MAXIT) # reset these vars.
C=list(maxit=MAXIT,temp=2000,trace=TRUE,REPORT=MAXIT)
PTM=proc.time() # start clock
SANN=optim(s,fn=tour,gr=insertion,method="SANN",control=C)
sec=(proc.time()-PTM)[3] # get seconds elapsed
cat("time elapsed:",sec,"\n")
RES[,1]=F

EA:
cat("EA run:\n")
set.seed(12345) # for replicability
EV=0; BEST=Inf; F=rep(NA,MAXIT) # reset these vars.
pSize=30;iters=ceiling((MAXIT-pSize)/(pSize-1))
PTM=proc.time() # start clock
OEA=oea(size=N,popSize=pSize,iters=iters,evalFunc=tour,crossfunc

=ox,mutfunc=insertion,REPORT=iters,elitism=1)
sec=(proc.time()-PTM)[3] # get seconds elapsed
cat("time elapsed:",sec,"\n")
RES[,2]=F

Lamarckian EA (LEA):
cat("LEA run:\n")

128 7 Applications

set.seed(12345) # for replicability
EV=0; BEST=Inf; F=rep(NA,MAXIT) # reset these vars.
pSize=30;iters=ceiling((MAXIT-pSize)/(pSize-1))
PTM=proc.time() # start clock
LEA=oea(size=N,popSize=pSize,iters=iters,evalFunc=local_imp
_tour,crossfunc=ox,mutfunc=insertion,REPORT=iters,elitism=1)

sec=(proc.time()-PTM)[3] # get seconds elapsed
cat("time elapsed:",sec,"\n")
RES[,3]=F

create PDF with comparison:
pdf("qa194-opt.pdf",paper="special")
par(mar=c(4.0,4.0,0.1,0.1))
X=seq(1,MAXIT,length.out=200)
ylim=c(min(RES)-50,max(RES))
plot(X,RES[X,1],ylim=ylim,type="l",lty=3,lwd=2,xlab="evaluations

",ylab="tour distance")
lines(X,RES[X,2],type="l",lty=2,lwd=2)
lines(X,RES[X,3],type="l",lty=1,lwd=2)
legend("topright",Methods,lwd=2,lty=3:1)
dev.off()

create 3 PDF files with best tours:
pdf("qa194-2-opt.pdf",paper="special")
par(mar=c(0.0,0.0,0.0,0.0))
plot(Data[c(R1[1:N],R1[1]),],type="l",xaxt="n",yaxt="n")
dev.off()
pdf("qa194-ea.pdf",paper="special")
par(mar=c(0.0,0.0,0.0,0.0))
b=OEA$population[which.min(OEA$evaluations),]
plot(Data[c(b,b[1]),],type="l",xaxt="n",yaxt="n")
dev.off()
pdf("qa194-lea.pdf",paper="special")
par(mar=c(0.0,0.0,0.0,0.0))
b=LEA$population[which.min(LEA$evaluations),]
plot(Data[c(b,b[1]),],type="l",xaxt="n",yaxt="n")
dev.off()

The code starts by reading the Qatar TSP instance from the Web by using the
getURL function of the RCurl package. The data is originally in the TSPLIB
Format (extension .tsp) and thus some parsing (e.g., remove the header part
until NODE_COORD_SECTION) is necessary to convert it into a CSV format. The
national TSPs assume a traveling cost that is defined by the Euclidean distance
rounded to the nearest whole number (TSPLIB EUC_2D-norm). This is easily
computed by using the R dist function, which returns a distance matrix between
all rows of a data matrix.

The code tests four methods to solve the Qatar instance: 2-opt, simulated
annealing, an order evolutionary algorithm, and an evolutionary Lamarckian variant.
The first method is executed using the the TSP package, which is specifically
addressed to handle the TSP and includes two useful functions: TSP—generates a
TSP object from a distance matrix; and solve_TSP—solves a TSP instance under

7.2 Traveling Salesman Problem 129

several method options (e.g., "2-opt" and "concorde"). To simplify the code
and analysis, the remaining optimization methods are only compared under a single
run, although a proper comparison would require the use of several runs, as shown in
Sect. 4.5. The simulated annealing and evolutionary algorithms are executed under
the same conditions. Similarly to the code presented in Sect. 4.5, the global EV,
BEST, and F are used to trace the evolution of optimization according to the number
of function evaluations. The method parameters were fixed into a temperature of
T D 2;000 for the simulated annealing and population size of LP D 30 for
the evolutionary algorithm. The Lamarckian approach works as follows. When the
evaluation function is called, a local search that uses domain knowledge is applied.
This local search works by randomly selecting a city and then moving such city to
the best possible position when analyzing only the city to direct neighbors (previous
and next city) distances.

The tour() (evaluation function) uses an already defined distance matrix (MD
object) to save computational effort (i.e., the Euclidean distance is only calculated
once). The local_imp_tour evaluates and returns the solution improved by
the domain knowledge local search method and it is used by the Lamarckian
evolutionary algorithm. The same initialization seed is used and both simulated
annealing and evolutionary methods are traced up to MAXIT=100000 function
evaluations. The insertion operator is used to change a solution, and the OX operator
is adopted to cross half of the individuals in the evolutionary algorithm. For each
method, the code shows the length of the tour and time elapsed (in seconds). The
code also generates three PDF files with a comparison of simulated annealing
and evolutionary approaches and two optimized tours (for 2-opt and evolutionary
algorithm methods). The execution result of file tsp.R is:

2-opt run:
object of class "TOUR"
result of method "2-opt" for 194 cities
tour length: 10279
time elapsed: 0.151
SANN run:
sann objective function values
initial value 91112.000000
final value 40687.000000
sann stopped after 99999 iterations
time elapsed: 74.469
EA run:
1 best: 87620 mean: 93128
3448 best: 22702 mean: 25067.03
time elapsed: 88.026
LEA run:
1 best: 87002 mean: 92674.93
3448 best: 12130 mean: 14462.53
time elapsed: 546.005

The execution times of simulated annealing and pure evolutionary algorithm
are quite similar and are much longer when compared with 2-opt approach. The
Lamarckian evolution method requires around six times more computation when

130 7 Applications

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

20
00

0
40

00
0

60
00

0
80

00
0

evaluations

to
ur

 d
is

ta
nc

e
SANN
EA
LEA

Fig. 7.3 Comparison of simulated annealing (SANN) and evolutionary algorithm (EA)
approaches for the Qatar TSP

compared with the evolutionary algorithm. The extra computation is explained by
the use of the local search, given that all evaluations require the execution of an
extra linear cycle.

The comparison between the simulated annealing and evolutionary methods is
shown in Fig. 7.3. Under the experimental setup conditions, the simulated annealing
initially performs similarly to the two evolutionary algorithm methods. However,
after around 10,000 evaluations the simulated annealing improvement gets slower
when compared with the standard evolutionary algorithm and after around 50,000
evaluations, the convergence is rather flat, reaching a tour value of 40,687. The
pure evolutionary algorithm performs better than the simulated annealing, getting
an average distance decrease of 10,184 after 50,000 evaluations, when compared
with the simulated annealing, and obtaining a final tour of 22,702. The Lamarckian
method performs much better than the pure evolutionary algorithm, presenting an
average tour improvement of 17,117 after 50,000 evaluations and reaching a final
value of 12,130. The best solution is produced by the 2-opt method (which is also
the fastest method), with a tour length of 10,279 and that is 1,851 points better than

7.2 Traveling Salesman Problem 131

Fig. 7.4 Optimized tour obtained using evolutionary algorithm (left), Lamarckian evolution
(middle), and 2-opt (right) approaches for the Qatar TSP

the Lamarckian evolved tour. A visual comparison of the evolutionary algorithm,
Lamarckian evolution, and 2-opt optimized tours is shown in Fig. 7.4, revealing a
clear improvement in the quality of the solutions when moving from left to right.

In this demonstration, 2-opt provided the best results, followed by the Lamar-
ckian approach. However, 2-opt was specifically proposed for the symmetrical
and standard TSP and thus performs a massive and clever use of the distance
matrix (domain knowledge) to solve the task. The Lamarckian method also uses the
distance matrix, although with a much simpler approach when compared with 2-opt.
As explained in Chap. 1.1, the simulated annealing and evolutionary algorithms
are general purpose methods that only have an indirect access to the domain
knowledge through the received evaluation function values. This means that the
same modern optimization algorithms could be easily applied (by adjusting the
evaluation function) to other TSP variants (e.g., with constrains) or combinatorial
problems (e.g., job shop scheduling) while 2-opt (or even the Lamarckian method)
could not.

To demonstrate the previous point, a TSP variant is now addressed, where the
goal is set in terms of searching for the minimum area of the tour (and not tour
length). This new variant cannot be directly optimized using the 2-opt method.
However, the adaptation to a modern optimization method is straightforward and
just requires changing the evaluation function. To show this, the same Qatar instance
and evolutionary ordered representation optimization is adopted. The new R code is
presented in file tsp2.R:

tsp2.R file
this file assumes that tsp.R has already been executed

library(rgeos) # get gArea function

poly=function(data)
{ poly="";sep=", "
for(i in 1:nrow(data))
{ if(i==nrow(data)) sep=""

poly=paste(poly,paste(data[i,],collapse=" "),sep,sep="")
}

132 7 Applications

poly=paste("POLYGON((",poly,"))",collapse="")
poly=readWKT(poly) # WKT format to polygon

}

new evaluation function: area of polygon
area=function(s) return(gArea(poly(Data[c(s,s[1]),])))

cat("area of 2-opt TSP tour:",area(R1),"\n")

plot area of 2-opt:
pdf("qa-2opt-area.pdf",paper="special")
par(mar=c(0.0,0.0,0.0,0.0))
PR1=poly(Data[c(R1,R1[1]),])
plot(PR1,col="gray")
dev.off()

EA:
cat("EA run for TSP area:\n")
set.seed(12345) # for replicability
pSize=30;iters=20
PTM=proc.time() # start clock
OEA=oea(size=N,popSize=pSize,iters=iters,evalFunc=area,crossfunc

=ox,mutfunc=insertion,REPORT=iters,elitism=1)
sec=(proc.time()-PTM)[3] # get seconds elapsed
bi=which.min(OEA$evaluations)
b=OEA$population[which.min(OEA$evaluations),]
cat("best fitness:",OEA$evaluations[1],"time elapsed:",sec,"\n")

plot area of EA best solution:
pdf("qa-ea-area.pdf",paper="special")
par(mar=c(0.0,0.0,0.0,0.0))
PEA=poly(Data[c(b,b[1]),])
plot(PEA,col="gray")
lines(Data[c(b,b[1]),],lwd=2)
dev.off()

The evaluation function uses the gArea() function of the rgeos package
to compute the area of a polygon. Before calculating the area, the function
first converts the selected solution into a polygon object by calling the poly
auxiliary function. The latter function first encodes the tour under the Well Known
Text (WKT) format (see http://en.wikipedia.org/wiki/Well-known_text) and then
uses readWKT() (from the rgeos package) function to create the polygon
(sp geometry object used by the rgeos package). For comparison purposes,
the area is first computed for the tour optimized by the 2-opt method. Then, the
evolutionary optimization is executed and stopped after 20 iterations. The code also
produces two PDF files with area plots related to the best solutions optimized by the
evolutionary algorithm and 2-opt methods.

The result of executing file tsp2.R is:

> source("tsp2.R")
area of 2-opt TSP tour: 465571.6
EA run for TSP area:

http://en.wikipedia.org/wiki/Well-known_text

7.3 Time Series Forecasting 133

Fig. 7.5 Area of Qatar tour given by 2-opt (left) and optimized by the evolutionary approach
(right)

1 best: 103488.9 mean: 562663.5
20 best: 616.7817 mean: 201368.5
best fitness: 616.7817 time elapsed: 23.383

Now the evolutionary approach achieves a value that is much lower when compared
with 2-opt (difference of 464954.8). The area of each optimized solution is shown
in Fig. 7.5. As shown by the plots, the evolutionary algorithm best solution contains
a huge number of crossing paths, which clearly reduces the area of the optimized
tour. In contrast, the 2-opt solution does not contain crossing paths. In effect, 2-opt
intentionally avoids crossing paths and such strategy is very good for reducing the
path length but not the tour area.

7.3 Time Series Forecasting

A univariate time series is a collection of timely ordered observations related with
an event (y1; y2; : : : ; yt) and the goal of TSF is to model a complex system as a
black-box, predicting its behavior based on historical data (Makridakis et al. 1998).
Past values (called in-samples) are first used to fit the model and then forecasts
are estimated (Oyt) for future values (called out-of-samples). The TSF task is to
determine a function f such that Oyt D f .yt�1; yt�2; : : : ; yt�k/, where k denotes the
maximum time lag used by the model. Under one-step ahead forecasting, the errors
(or residuals) are given by ei D yi � Oyi , where i 2 fT C 1; T C 2; : : : ; T C hg,
T is the current time, h is the horizon (or number of predictions), and the errors
are to be minimized according to an accuracy metric, such as the mean absolute

134 7 Applications

error (MAE D
P

i jei j
h

) (Stepnicka et al. 2013). TSF is highly relevant in distinct
domains, such as Agriculture, Finance, Sales, and Production. TSF forecasts can be
used to support individual and organizational decision making (e.g., for setting early
production plans).

Due to its importance, several statistical TSF methods were proposed, such as
the autoregressive integrated moving-average (ARIMA) methodology, which was
proposed in 1976 and is widely used in practice (Makridakis et al. 1998). The
methodology assumes three main steps: model identification, parameter estimation,
and model validation. The ARIMA base model is set in terms of a linear combi-
nation of past values (AR component of order p) and errors (MA component of
order q). The definition assumed by the R arima function is:

Oxt D a1xt1 C : : :C apxtp C et C b1et1 C : : :C bqetq (7.1)

where xt D yt � m and m, a1; : : : ; ap and b1; : : : ; bq are coefficients that
are estimated using an optimization method. The arima() default is to use a
conditional sum of squares search to find starting values and then apply a maximum
likelihood optimization. To identify and estimate the best ARIMA model, the
auto.arima function is adopted from the forecast package.

In this section, genetic programming and rgb package is adopted to fit a time
series using a simple function approximation that uses arithmetic operators (+, -, *
and /). As explained in Sect. 5.8, the advantage of genetic programming is that
it can find explicit solutions that are easy to interpret by humans. The selected
series is the sunspot numbers (also known as Wolf number), which measures
the yearly number of dark spots present at the surface of the sun. Forecasting
this series is relevant due to several reasons (Kaboudan 2003): the sunspots data
generation process is unknown; sunspots are often used to estimate solar activity
levels; accurate prediction of sunspot numbers is a key issue for weather forecasting
and for making decisions about satellite orbits and space missions. The data range
from 1700 to 2012. In this demonstration, data from the years 1700–1980 are used as
in-samples and the test period is 1981–2012 (out-of-samples). Forecasting accuracy
is measured using the MAE metric and one-step ahead forecasts. The respective R
code is presented in file tsf.R:

tsf.R file
library(RCurl) # load RCurl package

get sunspot series
txt=getURL("http://sidc.oma.be/silso/DATA/yearssn.dat")
consider 1700-2012 years (remove 2013 * row that is provisory

in 2014)
series=strsplit(txt,"\n")[[1]][1:(2012-1700+1)]
cat(series,sep="\n",file="sunspots.dat") # save to file
series=read.table("sunspots.dat")[,2] # read from file

L=length(series) # series length
forecasts=32 # number of 1-ahead forecasts

7.3 Time Series Forecasting 135

outsamples=series[(L-forecasts+1):L] # out-of-samples
sunspots=series[1:(L-forecasts)] # in-samples

mean absolute error of residuals
maeres=function(residuals) mean(abs(residuals))

fit best ARIMA model:
INIT=10 # initialization period (no error computed before)
library(forecast) # load forecast package
arima=auto.arima(sunspots) # detected order is AR=2, MA=1
print(arima) # show ARIMA model
cat("arima fit MAE=",

maeres(arima$residuals[INIT:length(sunspots)]),"\n")
one-step ahead forecasts:
(this code is needed because forecast function
only issues h-ahead forecasts)
LIN=length(sunspots) # length of in-samples
f1=rep(NA,forecasts)
for(h in 1:forecasts)
{ # execute arima with fixed coefficients but with more

in-samples:
arima1=arima(series[1:(LIN+h-1)],order=arima$arma[c(1,3,2)],

fixed=arima$coef)
f1[h]=forecast(arima1,h=1)$mean[1]

}
e1=maeres(outsamples-f1)
text1=paste("arima (MAE=",round(e1,digits=1),")",sep="")

fit genetic programming arithmetic model:
library(rgp) # load rgp
ST=inputVariableSet("x1","x2")#same order of AR arima component
cF1=constantFactorySet(function() rnorm(1)) # mean=0, sd=1
FS=functionSet("+","*","-","/") # arithmetic

genetic programming time series function
receives function f
if(h>0) then returns 1-ahead forecasts
else returns MAE over fitting period (in-samples)
gpts=function(f,h=0)
{
if(h>0) TS=series
else TS=series[1:LIN]
LTS=length(TS)
F=rep(0,LTS) # forecasts
E=rep(0,LTS) # residuals
if(h>0) I=(LTS-h+1):LTS # h forecasts
else I=INIT:LTS # fit to in-samples
for(i in I)

{
F[i]=f(TS[i-1],TS[i-2])
if(is.nan(F[i])) F[i]=0 # deal with NaN
E[i]=TS[i]-F[i]
}

136 7 Applications

if(h>0) return (F[I]) # forecasts
else return(maeres(E[I])) # MAE on fit

}

mutation function
mut=function(func)
{ mutateSubtree(func,funcset=FS,inset=ST,conset=cF1,

mutatesubtreeprob=0.3,maxsubtreedepth=4)}

set.seed(12345) # set for replicability
gp=geneticProgramming(functionSet=FS,inputVariables=ST,

constantSet=cF1,
populationSize=100,
fitnessFunction=gpts,
stopCondition=makeStepsStopCondition(1000),
mutationFunction=mut,
verbose=TRUE)

f2=gpts(gp$population[[which.min(gp$fitnessValues)]],
h=forecasts)

e2=maeres(outsamples-f2)

text2=paste("gp (MAE=",round(e2,digits=1),")",sep="")
cat("best solution:\n")
print(gp$population[[which.min(gp$fitnessValues)]])
cat("gp fit MAE=",min(gp$fitnessValues),"\n")

show quality of one-step ahead forecasts:
ymin=min(c(outsamples,f1,f2))
ymax=max(c(outsamples,f1,f2))
pdf("fsunspots.pdf")
par(mar=c(4.0,4.0,0.1,0.1))
plot(outsamples,ylim=c(ymin,ymax),type="b",pch=1,

xlab="time (years after 1980)",ylab="values",cex=0.8)
lines(f1,lty=2,type="b",pch=3,cex=0.5)
lines(f2,lty=3,type="b",pch=5,cex=0.5)
legend("topright",c("sunspots",text1,text2),lty=1:3,

pch=c(1,3,5))
dev.off()

The ARIMA model is automatically found using the auto.arima function,
which receives as inputs the in-samples. For this example, the identified model is an
ARIMA.2; 0; 1/, with p D 2 and q D 1. The forecast function (from package
forecast) executes multi-step ahead predictions. Thus, one-step ahead forecasts
are built by using an iterative call to the function, where in each iteration the ARIMA
model is computed with one extra in-sample value. For comparison purposes, the
genetic programming method uses the same p order and thus the input variables
are x1D yt�1 and x2D yt�2. In order to save code, the gpts function is used
under two execution goals: fitness function, computing the MAE over all in-samples
except for the first INIT values (when h=0); and estimation of forecasts, returning
h one-step ahead forecasts. Since the / operator can generate NaN values (e.g.,
0/0), any NaN value is transformed into 0. To simplify the demonstration, only

7.3 Time Series Forecasting 137

one run is used, with a fixed seed. The genetic programming is stopped after 1,000
generations and then a PDF file is created, comparing the forecasts with the sunspot
values. The result of executing file tsf.R is:1

> source("tsf.R")
Series: sunspots
ARIMA(2,0,1) with non-zero mean

Coefficients:
ar1 ar2 ma1 intercept

1.4565 -0.7493 -0.1315 48.0511
s.e. 0.0552 0.0502 0.0782 2.8761

sigma^2 estimated as 263.6: log likelihood=-1183.17
AIC=2376.33 AICc=2376.55 BIC=2394.52
arima fit MAE= 12.22482
STARTING genetic programming evolution run (Age/Fitness/

Complexity Pareto GP search-heuristic) ...
evolution step 100, fitness evaluations: 1980, best fitness:

17.475042, time elapsed: 7.63 seconds
evolution step 200, fitness evaluations: 3980, best fitness:

17.474204, time elapsed: 13.18 seconds
evolution step 300, fitness evaluations: 5980, best fitness:

14.099732, time elapsed: 19.82 seconds
evolution step 400, fitness evaluations: 7980, best fitness:

12.690703, time elapsed: 27.49 seconds
evolution step 500, fitness evaluations: 9980, best fitness:

11.802043, time elapsed: 36.59 seconds
evolution step 600, fitness evaluations: 11980, best fitness:

11.791989, time elapsed: 48.06 seconds
evolution step 700, fitness evaluations: 13980, best fitness:

11.784837, time elapsed: 58.44 seconds
evolution step 800, fitness evaluations: 15980, best fitness:

11.768817, time elapsed: 1 minute, 8.75 seconds
evolution step 900, fitness evaluations: 17980, best fitness:

11.768817, time elapsed: 1 minute, 18.74 seconds
evolution step 1000, fitness evaluations: 19980, best fitness:

11.768817, time elapsed: 1 minute, 28.74 seconds
Genetic programming evolution run FINISHED after 1000 evolution

steps, 19980 fitness evaluations and 1 minute, 28.74
seconds.

best solution:
function (x1, x2)
x1/(x2 + x1) * (x1 + x1/(x2 + x1) * (x1 + x1 - x1/
(1.3647488967524 +1.3647488967524)) - x1/(x2 + x1) * x1/
(1.3647488967524 +(1.3647488967524 + 1.3647488967524/x2)))

gp fit MAE= 11.76882

The ARIMA.2; 0; 1/ model fits the in-samples with an MAE of 12.2 and
the genetic programming method best fitness is slightly better (MAE D 11:8).

1These results were achieved with rgp version 0.3-4 and later rgp versions might produce
different results.

138 7 Applications

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l
l

0 5 10 15 20 25 30

0
50

10
0

15
0

time (years after 1980)

va
lu

es

l sunspots
arima (MAE=14.8)
gp (MAE=14.1)

Fig. 7.6 Sunspot one-step ahead forecasts using ARIMA and genetic programming (gp) methods

The genetic programming representation does not include the MA terms (i.e.,
past errors) of ARIMA but the evolved solution is nonlinear (due to the *
operator). The quality of the one-step ahead forecasts is shown in Fig. 7.6. Both
ARIMA and genetic programming predictions are close to the true sunspot values.
Overall, the genetic programming solution produces slightly better forecasts with
an improvement of 0.7 when compared with the ARIMA method in terms of
MAE measured over the out-of-samples. This is an interesting result, since ARIMA
methodology was specifically designed for TSF while genetic programming is a
much more generic optimization method.

7.4 Wine Quality Classification

Classification is an important data mining/machine learning task, where the goal
is to build a data-driven model (i.e., model fit using a dataset) that is capable of
predicting a class label (output target) given several input variables that characterize
an item (Cortez 2012). For example, a classification model can estimate the type
of credit client, “good” or “bad,” given the status of her/his bank account, credit
purpose, and amount.

Often, it is possible to assign probabilities (p 2 Œ0; 1�) for a class label when
using a classifier. Under such scheme, the choice of a label is dependent on a

7.4 Wine Quality Classification 139

decision threshold D, such that the class is true if p > D. The receiver operating
characteristic (ROC) curve shows the performance of a two class classifier across
the range of possible threshold (D) values, plotting one minus the specificity (false
positive rate—FPR; x-axis) versus the sensitivity (also known as true positive rate—
TPR; y-axis) (Fawcett 2006). The overall accuracy is given by the area under the
curve (AUC D R 1

0
ROC dD), measuring the degree of discrimination that can be

obtained from a given model. The ROC analysis is a popular and richer measure for
evaluating classification discrimination capability. The main advantage of the ROC
curve is that performance is not dependent on the class label distributions and error
costs (Fawcett 2006). Since there is a trade-off between specificity and sensitivity
errors, the option for setting the best D value can be left for the domain expert.
The ideal classified should present an AUC of 1.0, while an AUC of 0.5 denotes a
random classifier. Often, AUC values are read as: 0.7—good; 0.8—very good; and
0.9—excellent.

Given the interest in classification, several machine learning methods have been
proposed, each one with its own purposes and advantages. In this section, the
support vector machine (SVM) model is adopted. This is a powerful learning tool
that is based on a statistical learning theory and was developed in the 1990s under
the work of Vapnik and its collaborators (e.g., Cortes and Vapnik 1995). The model
is popular due to its learning flexibility (i.e., no a priori restriction is imposed)
and tendency for achieving high quality classification results. In effect, SVM was
recently considered one of the most influential data mining algorithms due to its
classification capabilities (Wu et al. 2008).

The basic idea of an SVM is to transform the input space into a higher feature
space by using a nonlinear mapping that depends on a kernel function. Then, the
algorithm finds the best linear separating hyperplane, related to a set of support
vector points, in the feature space. The gaussian kernel is popular option and
presents less hyperparameters and numerical difficulties than other kernels (e.g.,
polynomial or sigmoid). When using this kernel, SVM classification performance
is affected by two hyperparameters: � , the parameter of the kernel, and C > 0,
a penalty parameter of the error term. Thus, model selection is a key issue when
using SVM. When performing model selection, classification performance is often
measured over a validation set, containing data samples that do not belong to the
training set. This procedure is used to avoid overfitting, since SVM can easily fit
every single sample, possibly including noise or outliers, and such model would
have limited generalization capabilities. The validation set can be created by using
a holdout or k-fold cross-validation method (Kohavi 1995) to split the training data
into training and validation sets.

Classification performance is also affected by the input variables used to fit the
model (this includes SVM and other models). Feature selection, i.e., the selection
of the right inputs, is useful to discard irrelevant variables (also known as features),
leading to simpler models that are easier to interpret and often presenting higher
predictive accuracies (Guyon and Elisseeff 2003).

There is no optimal universal method for tuning a classifier. Thus, often trial-
and-error or heuristics are used, normally executed using only one type of selection,
such as backward selection for feature selection (Guyon and Elisseeff 2003) and grid

140 7 Applications

search for model selection (Hsu et al. 2003). However, ideally both selection types
should be performed simultaneously. This section follows such approach, under
a multi-objective optimization search. As explained in Freitas (2004), the multi-
objective strategy is justified by the trade-off that exists between having less features
and increasing the classifier performance. The use of a modern optimization method,
such as the NSGAII algorithm adopted in this section, is particularly appealing to
non-specialized data mining/machine learning users, given that the search is fully
automatic and more exhaustive, thus tending to provide better performances when
compared with the manual design.

The University California Irvine (UCI) machine learning repository (Bache
and Lichman 2013) contains more than 280 datasets that are used by the data
mining community to test algorithms and tools. Most datasets are related with
classification tasks. In particular, this section explores the wine quality that was
proposed and analyzed in Cortez et al. (2009). The goal is to model wine quality
based on physicochemical tests. The output target (quality) was computed as the
median of at least three sensory evaluations performed by wine experts, using a
scale that ranges from 1 (very poor) to 10 (excellent). The physicochemical tests
include 11 continuous variables (inputs), such as chlorides and alcohol (vol.%).
As explained in Cortez et al. (2009), building a data-driven model, capable of
predicting wine quality from physicochemical values, is important for the wine
domain because the relationships between the laboratory tests and sensory analysis
are complex and are still not fully understood. Thus, an accurate data-driven model
can support the wine expert decisions, aiding the speed and quality of the evaluation
performance. Also, such model could also be used to improve the training of
oenology students.

This section exemplifies how the best classification model can be optimized by
performing a simultaneous feature and model selection. Given that two objectives
are defined, i.e., improving classification performance and reducing the number of
features used by the model, a multi-objective approach is adopted. The example
code uses the mco and rminer packages. The former is used to get the nsga2
function (NSGAII algorithm). The latter library facilitates the use of data mining
algorithms in classification and regression tasks by presenting a short and coherent
set of functions (Cortez 2010). The rminer package is only briefly described here,
for further details consult help(package=rminer). The classification example
for the white wine quality dataset is coded in file wine-quality.R:

wine-quality.R file

library(rminer) # load rminer package
library(kernlab) # load svm functions used by rminer
library(mco) # load mco package

load wine quality dataset directly from UCI repository:
file="http://archive.ics.uci.edu/ml/machine-learning-databases/

wine-quality/winequality-white.csv"
d=read.table(file=file,sep=";",header=TRUE)

convert the output variable into 3 classes of wine:

7.4 Wine Quality Classification 141

"poor_or_average" <- 3,4,5 or 6;
"good_or_excellent" <- 7, 8 or 9
d$quality=cut(d$quality,c(1,6,10),

c("poor_or_average","good_or_excellent"))
output=ncol(d) # output target index (last column)
maxinputs=output-1 # number of maximum inputs

to speed up the demonstration, select a smaller sample of
data:

n=nrow(d) # total number of samples
ns=round(n*0.25) # select a quarter of the samples
set.seed(12345) # for replicability
ALL=sample(1:n,ns) # contains 25% of the index samples
show a summary of the wine quality dataset (25%):
print(summary(d[ALL,]))
cat("output class distribuition (25% samples):\n")
print(table(d[ALL,]$quality)) # show distribution of classes

holdout split:
select training data (for fitting the model), 70%; and
test data (for estimating generalization capabilities), 30%.
H=holdout(d[ALL,]$quality,ratio=0.7)
cat("nr. training samples:",length(H$tr),"\n")
cat("nr. test samples:",length(H$ts),"\n")

evaluation function:
x is in the form c(Gamma,C,b1,b2,...,b11)
eval=function(x)
{ n=length(x)
gamma=2^x[1]
C=2^x[2]
features=round(x[3:n])
inputs=which(features==1)
attributes=c(inputs,output)
divert console:
sink is used to avoid kernlab ksvm messages in a few cases
sink(file=textConnection("rval","w",local = TRUE))
M=mining(quality�.,d[H$tr,attributes],method=c("kfold",3),

model="svm",search=gamma,mpar=c(C,NA))
sink(NULL) # restores console
AUC for the internal 3-fold cross-validation:
auc=as.numeric(mmetric(M,metric="AUC"))
auc1=1-auc # transform auc maximization into minimization goal
return(c(auc1,length(inputs)))

}

NSGAII multi-objective optimization:
cat("NSGAII optimization:\n")
m=2 # two objectives: AUC and number of features
lower=c(-15,-5,rep(0,maxinputs))
upper=c(3,15,rep(1,maxinputs))
PTM=proc.time() # start clock

142 7 Applications

G=nsga2(fn=eval,idim=length(lower),odim=m,lower.bounds=lower,
upper.bounds=upper,popsize=12,generations=10)

sec=(proc.time()-PTM)[3] # get seconds elapsed
cat("time elapsed:",sec,"\n")

show the Pareto front:
I=which(G$pareto.optimal)
for(i in I)
{ x=G$par[i,]

n=length(x)
gamma=2^x[1]
C=2^x[2]
features=round(x[3:n])
inputs=which(features==1)
cat("gamma:",gamma,"C:",C,"features:",inputs,"; f=(",

1-G$value[i,1],G$value[i,2],")\n",sep=" ")
}

create PDF showing the Pareto front:
pdf(file="nsga-wine.pdf",paper="special",height=5,width=5)
par(mar=c(4.0,4.0,0.1,0.1))
SI=sort.int(G$value[I,1],index.return=TRUE)
plot(1-G$value[SI$ix,1],G$value[SI$ix,2],xlab="AUC",ylab="nr.

features",type="b",lwd=2)
dev.off()

selection of the SVM model with 4 inputs:
x=G$par[I[7],]
gamma=2^x[1]
C=2^x[2]
features=round(x[3:n])
inputs=which(features==1)
attributes=c(inputs,output)
fit a SVM with the optimized parameters:
cat("fit SVM with nr features:",length(inputs),"nr samples:",

length(H$tr),"gamma:",gamma,"C:",C,"\n")
cat("inputs:",names(d)[inputs],"\n")
M=fit(quality�.,d[H$tr,attributes],model="svm",

search=gamma,mpar=c(C,NA))
get SVM predictions for unseen data:
P=predict(M,d[H$ts,attributes])
create PDF showing the ROC curve for unseen data:
auc=mmetric(d[H$ts,]$quality,P,metric="AUC")
main=paste("ROC curve for test data",

" (AUC=",round(auc,digits=2),")",sep="")
mgraph(d[H$ts,]$quality,P,graph="ROC",PDF="roc-wine",main=main,

baseline=TRUE,Grid=10,leg="SVM")

In this example, the read.table function is used to read the CSV file directly
from the UCI repository. Originally, there are seven numeric values for the wine
quality variable (range from 3 to 9). The example approaches a simple binary
task, thus the cut R function is used to transform the numeric values into two
classes. Also, the original dataset includes 4,898 samples, which is a large number
for the SVM fit. To reduce the computational effort, in this demonstration 25 %
of the samples are first selected. Given that classification performance should be

7.4 Wine Quality Classification 143

accessed over unseen data, not used for fitting, the popular holdout split validation
procedure is adopted, where 70 % of the selected samples are used for the search
of the best model, while the other 30 % of the samples are used as test set, for
estimating the model true generalization capabilities. The holdout function
creates a list with the training ($tr) and test ($ts) indexes related with a output
target. The NSGAII chromosome is made in terms of real values and includes � ,
C and 11 values related with feature selection. As advised in Hsu et al. (2003), the
� and C parameters are searched using exponentially growing sequences, where
� 2 Œ2�15; 23� and C 2 Œ2�5; 215�. The feature selection values are interpreted as
boolean numbers, where the respective input variable is included in the model if
> 0:5.

The evaluation function is based on the powerful mining function, which trains
and tests a classifier under several runs and a given validation method. In this case,
the used function arguments were:

• x=quality~.—an R formula that means that the target is the quality
attribute and that all other data attributes are used as inputs;

• data=d[H$tr,attributes]—dataset used (data.frame), in this case
corresponds to the training set samples and variables defined by the solution x
(features and output);

• method=c("kfold",3)—the estimation method used by the function (in
this case a threefold cross-validation);

• model="svm"—model type name;
• search=gamma—hyperparameter to tune (in this case it is fixed to the value of
gamma); and

• mpar=c(C,NA)—vector with extra model parameters (in this case it sets C).

For some gamma and C configurations, the SVM function produces some
messages and thus the useful sink R function was adopted to discard these
messages. At the end, the evaluation function returns the AUC value (computed
using the mmetric rminer function) and number of features.

The NSGAII algorithm is executed using a small population size (12) and
stopped after 10 generations, in order to reduce the computational effort of the
demonstration. After the search, the Pareto front is shown in the console and also
plotted into a PDF file. In the example, one particular model (with four inputs)
is selected and fit using all training data (fit function from rminer). Then,
predictions are executed for the test data (using the predict rminer function)
and the respective ROC curve is saved into another PDF file (using the mgraph
rminer function). The execution result of file wine-quality.R is:

> source("wine-quality.R")
fixed.acidity volatile.acidity citric.acid

residual.sugar
Min. : 3.800 Min. :0.0800 Min. :0.0000 Min. :

0.600
1st Qu.: 6.300 1st Qu.:0.2100 1st Qu.:0.2600 1st Qu.:

1.800
Median : 6.800 Median :0.2600 Median :0.3100 Median :

5.700

144 7 Applications

Mean : 6.813 Mean :0.2788 Mean :0.3253 Mean :
6.322

3rd Qu.: 7.300 3rd Qu.:0.3200 3rd Qu.:0.3700 3rd Qu.:
9.500

Max. :14.200 Max. :0.8150 Max. :1.2300 Max. :
26.050

chlorides free.sulfur.dioxide total.sulfur.dioxide
Min. :0.00900 Min. : 3.0 Min. : 21.0
1st Qu.:0.03600 1st Qu.: 23.0 1st Qu.:108.0
Median :0.04300 Median : 34.0 Median :134.0
Mean :0.04508 Mean : 34.9 Mean :138.4
3rd Qu.:0.05000 3rd Qu.: 45.0 3rd Qu.:167.0
Max. :0.21100 Max. :146.5 Max. :366.5

density pH sulphates alcohol
Min. :0.9871 Min. :2.790 Min. :0.2200 Min. : 8.50
1st Qu.:0.9918 1st Qu.:3.090 1st Qu.:0.4100 1st Qu.: 9.50
Median :0.9937 Median :3.180 Median :0.4700 Median :10.40
Mean :0.9939 Mean :3.189 Mean :0.4878 Mean :10.54
3rd Qu.:0.9959 3rd Qu.:3.283 3rd Qu.:0.5500 3rd Qu.:11.40
Max. :1.0030 Max. :3.810 Max. :0.9800 Max. :14.00

quality
poor_or_average :950
good_or_excellent:274

output class distribuition (25% samples):

poor_or_average good_or_excellent
950 274

nr. training samples: 856
nr. test samples: 368
NSGAII optimization:
time elapsed: 124.027
gamma: 0.09344539 C: 0.4146168 features: 1 2 4 5 6 7 9 10 11 ; f

=(0.8449871 9)
gamma: 0.002701287 C: 48.64076 features: 6 11 ; f=(0.8044546 2)
gamma: 4.332014e-05 C: 876.2796 features: 3 5 6 7 9 11 ;
f=(0.827304 6)

gamma: 0.002422175 C: 56.40689 features: 11 ; f=(0.7830263 1)
gamma: 4.332014e-05 C: 948.0165 features: 5 6 7 9 11 ;
f=(0.8255598 5)

gamma: 0.4768549 C: 0.0702998 features: 1 2 4 5 6 7 10 11 ;
f=(0.8399648 8)

gamma: 0.0007962147 C: 948.0165 features: 5 6 7 11 ;
f=(0.8144563 4)

fit SVM with nr features: 4 nr samples: 856 gamma: 0.0007962147
C: 948.0165

inputs: chlorides free.sulfur.dioxide total.sulfur.dioxide
alcohol

7.5 Command Summary 145

l

l

l

l

l

l

l

0.79 0.80 0.81 0.82 0.83 0.84

2
4

6
8

AUC

nr
. f

ea
tu

re
s

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve for test data (AUC=0.73)

FPR
T

P
R

SVM
baseline

Fig. 7.7 The optimized Pareto front (left) and ROC curve for the SVM with four inputs (right) for
the white wine quality task

The code starts by showing the summary of the selected dataset (with 25 % of
the data). The output classes are biased, where the most (78 %) of the samples are
related to poor or average wines. The NSGAII algorithm optimizes a Pareto front
with seven solutions. The left of Fig. 7.7 shows such front, which is non-convex,
and confirms the number of features versus classification performance trade-off.
The example code selects a particular model, in this case the SVM that uses four
inputs (AUC = 0.81). The right of Fig. 7.7 shows the ROC curve for such model,
computed over the test set. The respective AUC value is also shown in the plot
and it is slightly lower (difference of 0.07) than the one obtained using an internal
threefold cross-validation. This result was expected given that test set metrics tend to
be lower than validation metrics. The search algorithm has access to the validation
samples and thus it can highly optimize this value. Yet, the test data is only used
to measure the true generalization capabilities of the optimized model and after
the search is completed. Nevertheless, it should be stressed that 0.73 corresponds
to a good discrimination, while the model includes a very small number of input
variables. Thus, this is an interesting classification model that was automatically
found by the multi-objective search.

7.5 Command Summary

arima Fit an ARIMA time series model

auto.arima Automatic identification and estimation of an ARIMA model
(package forecast)

displacement Displacement operator (chapter file "oea.R")

146 7 Applications

dist Computes a distance matrix between rows of a data matrix

exchange Exchange operator (chapter file "oea.R")

fit Fit a supervised data mining model (package rminer)

forecast Package for time series forecasting

forecast() Generic function for forecasting from a time series model
(package forecast)

gArea() Compute the area of a polygon (package rgeos)

holdout Returns indexes for holdout data split with training and test sets
(package rminer)

insertion Insertion operator (chapter file "oea.R")

mining Trains and tests a model under several runs and a given valida-
tion method (package rminer)

mgraph Plots a data mining result graph (package rminer)

mmetric Compute classification or regression error metrics (package
rminer)

ox Order crossover (OX) operator (chapter file "oea.R")

oea Order representation evolutionary algorithm (chapter file
"oea.R")

ox Order crossover (OX) operator (chapter file "oea.R")

plot Plot function for geometry objects (package rgeos)

pmx Partially matched crossover (PMX) operator (chapter file
"oea.R")

predict Predict function for fit objects (package rminer)

readWKT Read WKT format into a geometry object (package rgeos)

rgeos Package that interfaces to geometry engine—open source

rminer Package for a simpler use of classification and regression data
mining methods

TSP Package for traveling salesman problems

TSP() Creates a TSP instance (package TSP)

7.6 Exercises

7.1. Encode the cycle crossover (cx function) for order representations, which
performs a number of cycles between two parent solutions: P1 and P2 (Rocha et al.
2001). Cycle 1 starts with the first value in P1 (v1) and analyzes the value at same
position in P2 (v). Then, it searches for v in P1 and analyzes the corresponding
value at position P2 (new v). This procedure continues until the new v is equal to v1,
ending the cycle. All P1 and P2 genes that were found in this cycle are marked.
Cycle 2 starts with the first value in P1 that is not marked and ends as described in
cycle 1. The whole process proceeds with similar cycles until all genes have been

7.6 Exercises 147

marked. The genes marked in odd cycles are copied from P1 to child 1 and from
P2 to child 2, while genes marked in even cycles are copied from P1 to child 2 and
from P2 to child 1.

Show the children that result from applying the cycle crossover to the parents
P1 = (1,2,3,4,5,6,7,8,9) and P2 = (9,8,1,2,3,4,5,6,7).

7.2. Encode the random mutation (randomm) and random crossover (randomx)
operators that randomly select an ordered mutation (exchange, insertion, or dis-
placement) or crossover (PMX, OX or CV). Optimize the same Qatar TSP instance
using two simulated annealing and evolutionary algorithm variants that use the
new randomm and randomx operators. Using the same setting of Sect. 7.2, show
the total distance of the optimized simulated annealing and evolutionary algorithm
tours.

7.3. Using the same sunspots TSF example (from Sect. 7.3), optimize coeffi-
cients of the ARIMA.2; 0; 1/ model using a particle swarm optimization method
and compare the MAE one-step ahead forecasts with the method returned by
auto.arima function. As lower and upper bounds for the particle swarm
optimization use the Œ�1; 1� range for all coefficients of ARIMA except m, which
should be searched around the sunspots average (within ˙10 % of the average
value).

7.4. Change the wine classification code (from Sect. 7.4) such that three quality
classes are defined: “bad”—3, 4 or 5; “average”—6; “good”—7, 8 or 9. To speed up
the execution of this exercise, consider only 10 % of the original samples (randomly
selected). Then, adapt the optimization to perform only model selection (search for
� and C ; use of a fixed number of 11 inputs) and consider three objectives: the max-
imization of the AUC value for each class label (use the metric="AUCCLASS"
argument for the mmetric function). Finally, show the Pareto front values in the
console and also in a plot using the scatterplot3d function.

References

Applegate D, Bixby R, Chvátal V, Cook W (2001) TSP cuts which do not conform to the template
paradigm. In: Computational combinatorial optimization. Springer, Berlin, pp 261–303

Applegate DL, Bixby RE, Chvatal V, Cook WJ (2011) The traveling salesman problem: a
computational study. Princeton University Press, Princeton

Bache K, Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml
Bäck T, Schwefel HP (1993) An overview of evolutionary algorithms for parameter optimization.

Evol Comput 1(1):1–23
Baluja S (1994) Population-based incremental learning: a method for integrating genetic search

based function optimization and competitive learning. Tech. rep., DTIC Document
Banzhaf W, Nordin P, Keller R, Francone F (1998) Genetic programming. An introduction. Morgan

Kaufmann, San Francisco
Bélisle CJ (1992) Convergence theorems for a class of simulated annealing algorithms on R d.

J Appl Probab 29:885–895
Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge
Brownlee J (2011) Clever algorithms: nature-inspired programming recipes, Lulu
Caflisch RE (1998) Monte carlo and quasi-monte carlo methods. Acta Numer 1998:1–49
Chen WN, Zhang J, Chung HS, Zhong WL, Wu WG, Shi YH (2010) A novel set-based particle

swarm optimization method for discrete optimization problems. IEEE Trans Evol Comput
14(2):278–300

Clerc M (2012) Standard particle swarm optimization. hal-00764996, version 1. http://hal.
archives-ouvertes.fr/hal-00764996

Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20(3):273–297
Cortez P (2010) Data mining with neural networks and support vector machines using the R/rminer

tool. In: Perner P (ed) Advances in data mining: applications and theoretical aspects. 10th
industrial conference on data mining. Lecture notes in artificial intelligence, vol 6171. Springer,
Berlin, pp 572–583

Cortez P (2012) Data mining with multilayer perceptrons and support vector machines. Springer,
Berlin, pp 9–25 (Chap. 2)

Cortez P, Rocha M, Neves J (2004) Evolving time series forecasting ARMA models. J Heuristics
10(4):415–429

Cortez P, Cerdeira A, Almeida F, Matos T, Reis J (2009) Modeling wine preferences by data mining
from physicochemical properties. Dec Support Syst 47(4):547–553

Croes G (1958) A method for solving traveling-salesman problems. Oper Res 6(6):791–812
Deb K (2001) Multi-objective optimization. In: Multi-objective optimization using evolutionary

algorithms. Wiley, Chichester, pp 13–46
Eberhart R, Kennedy J, Shi Y (2001) Swarm intelligence. Morgan Kaufmann, San Francisco

© Springer International Publishing Switzerland 2014
P. Cortez, Modern Optimization with R, Use R!, DOI 10.1007/978-3-319-08263-9

149

http://archive.ics.uci.edu/ml
http://hal.archives-ouvertes.fr/hal-00764996
http://hal.archives-ouvertes.fr/hal-00764996

150 References

Eberhart RC, Shi Y (2011) Computational intelligence: concepts to implementations. Morgan
Kaufmann, San Francisco

Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874
Flasch O (2013) A friendly introduction to rgp. http://cran.r-project.org/web/packages/rgp/

vignettes/rgp_introduction.pdf
Freitas AA (2004) A critical review of multi-objective optimization in data mining: a position

paper. ACM SIGKDD Explor Newslett 6(2):77–86
Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput

Oper Res 13(5):533–549
Glover F (1990) Tabu search: a tutorial. Interfaces 20(4):74–94
Glover F, Laguna M (1998) Tabu search. Springer, Heidelberg
Goldberg DE, Deb K (1991) A comparative analysis of selection schemes used in genetic

algorithms, Urbana 51:61801–62996.
Gonzalez-Fernandez Y, Soto M (2012) copulaedas: an R package for estimation of distribution

algorithms based on Copulas. arXiv preprint arXiv:12095429
Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res

3:1157–1182
Holland J (1975) Adaptation in natural and artificial systems. Ph.D. thesis, University of Michigan
Hsu CH, Chang CC, Lin CJ (2003) A practical guide to support vector classification. Tech. rep.,

National Taiwan University
Huang CM, Lee YJ, Lin DK, Huang SY (2007) Model selection for support vector machines via

uniform design. Comput Stat Data Anal 52(1):335–346
Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a

scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506
Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat

5(3):299–314
Joe H (1997) Multivariate models and dependence concepts, vol 73. CRC Press, Boca Raton
Kaboudan MA (2003) Forecasting with computer-evolved model specifications: a genetic pro-

gramming application. Comput Oper Res 30(11):1661–1681
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: ICNN’95 - IEEE international

conference on neural networks proceedings. IEEE Computer Society, Perth, pp 1942–1948
Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model

selection. In: Proceedings of the international joint conference on artificial intelligence (IJCAI),
vol 2. Morgan Kaufmann, Montreal

Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms:
a tutorial. Reliab Eng Syst Saf 91(9):992–1007

Larrañaga P, Lozano JA (2002) Estimation of distribution algorithms: a new tool for evolutionary
computation, vol 2. Kluwer Academic, Boston

Lucasius CB, Kateman G (1993) Understanding and using genetic algorithms part 1. Concepts,
properties and context. Chemom Intell Lab Syst 19(1):1–33

Luke S (2012) Essentials of metaheuristics. Lulu.com, online version at http://cs.gmu.edu/~sean/
book/metaheuristics

Makridakis S, Weelwright S, Hyndman R (1998) Forecasting: methods and applications, 3rd edn.
Wiley, New York

Mendes R (2004) Population topologies and their influence in particle swarm performance. Ph.D.
thesis, Universidade do Minho

Mendes R, Cortez P, Rocha M, Neves J (2002) Particle swarms for feedforward neural network
training. In: Proceedings of the 2002 international joint conference on neural networks (IJCNN
2002). IEEE Computer Society, Honolulu, pp 1895–1899

Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs. Springer, Berlin
Michalewicz Z (2008) Adaptive Business Intelligence, Computer Science Course 7005 Handouts
Michalewicz Z, Fogel D (2004) How to solve it: modern heuristics. Springer, Berlin
Michalewicz Z, Schmidt M, Michalewicz M, Chiriac C (2006) Adaptive business intelligence.

Springer, Berlin

http://cran.r-project.org/web/packages/rgp/vignettes/rgp_introduction.pdf
http://cran.r-project.org/web/packages/rgp/vignettes/rgp_introduction.pdf
http://cs.gmu.edu/~sean/book/metaheuristics
http://cs.gmu.edu/~sean/book/metaheuristics

References 151

Michalewicz Z, Schmidt M, Michalewicz M, Chiriac C (2007) Adaptive business intelligence:
three case studies. In: Evolutionary computation in dynamic and uncertain environments.
Springer, Berlin, pp 179–196

Muenchen RA (2013) The popularity of data analysis software. http://r4stats.com/articles/
popularity/

Mühlenbein H (1997) The equation for response to selection and its use for prediction. Evol
Comput 5(3):303–346

Mullen K, Ardia D, Gil D, Windover D, Cline J (2011) Deoptim: an r package for global
optimization by differential evolution. J Stat Softw 40(6):1–26

Paradis E (2002) R for beginners. Montpellier (F): University of Montpellier. http://cran.r-project.
org/doc/contrib/Paradis-rdebuts_en.pdf

Price KV, Storn RM, Lampinen JA (2005) Differential evolution a practical approach to global
optimization. Springer, Berlin

R Core Team (2013) R: a language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna. http://www.R-project.org/

Reinelt G (1994) The traveling salesman: computational solutions for TSP applications. Springer,
New York

Robert C, Casella G (2009) Introducing Monte Carlo methods with R. Springer, New York
Rocha M, Cortez P, Neves J (2000) The Relationship between learning and evolution in static

and in dynamic environments. In: Fyfe C (ed) Proceedings of the 2nd ICSC symposium on
engineering of intelligent systems (EIS’2000). ICSC Academic Press, Paisley, pp 377–383

Rocha M, Mendes R, Cortez P, Neves J (2001) Sitting guest at a wedding party: experiments on
genetic and evolutionary constrained optimization. In: Proceedings of the 2001 congress on
evolutionary computation (CEC2001), vol 1. IEEE Computer Society, Seoul, pp 671–678

Rocha M, Cortez P, Neves J (2007) Evolution of neural networks for classification and regression.
Neurocomputing 70:2809–2816

Rocha M, Sousa P, Cortez P, Rio M (2011) Quality of service constrained routing optimization
using evolutionary computation. Appl Soft Comput 11(1):356–364

Schrijver A (1998) Theory of linear and integer programming. Wiley, Chichester
Stepnicka M, Cortez P, Donate JP, Stepnicková L (2013) Forecasting seasonal time series with

computational intelligence: on recent methods and the potential of their combinations. Expert
Syst Appl 40(6):1981–1992

Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. J Glob Optim 11(4):341–359

Tang K, Li X, Suganthan P, Yang Z, Weise T (2009) Benchmark functions for the cec’2010
special session and competition on large-scale global optimization. Tech. rep., Technical report,
University of Science and Technology of China

Vance A (2009) R You Ready for R? http://bits.blogs.nytimes.com/2009/01/08/r-you-ready-for-r/
Venables W, Smith D, R Core Team (2013) An introduction to R. http://cran.r-project.org/doc/

manuals/R-intro.pdf
Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol

Comput 1(1):67–82
Wu X, Kumar V, Quinlan J, Gosh J, Yang Q, Motoda H, MacLachlan G, Ng A, Liu B, Yu P, Zhou

Z, Steinbach M, Hand D, Steinberg D (2008) Top 10 algorithms in data mining. Knowl Inf Syst
14(1):1–37

Zuur A, Ieno E, Meesters E (2009) A beginner’s guide to R. Springer, New York

http://r4stats.com/articles/popularity/
http://r4stats.com/articles/popularity/
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
http://www.R-project.org/
http://bits.blogs.nytimes.com/2009/01/08/r-you-ready-for-r/
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf

Solutions

Exercises of Chap. 2

2.1

v=rep(0,10) # same as: v=vector(length=10);v[]=0
v[c(3,7,9)]=1 # update values
print(v) # show v

2.2

v=seq(2,50,by=2) # one way
print(v)
v=(1:25)*2 # other way
print(v)

2.3

m=matrix(nrow=3,ncol=4)
m[1,]=1:4
m[2,]=sqrt(m[1,])
m[3,]=sqrt(m[2,])
m[,4]=m[,3]^2 # m[,3]*m[,3]
print(round(m,digits=2))
cat("sums of rows:",round(apply(m,1,sum),digits=2),"\n")
cat("sums of columns:",round(apply(m,2,sum),digits=2),"\n")

2.4

1 - use of for ... if
counteven1=function(x)
{ r=0
for(i in 1:length(x))

{ if(x[i]%%2==0) r=r+1 }
return(r)

}

© Springer International Publishing Switzerland 2014
P. Cortez, Modern Optimization with R, Use R!, DOI 10.1007/978-3-319-08263-9

153

154 Solutions

2 - use of sapply
auxiliary function
ifeven=function(x) # x is a number
{ if(x%%2) return(TRUE) else return(FALSE)}

counteven2=function(x)
{ return(sum(sapply(x,ifeven))) }

3 - use of direct condition (easiest way)
counteven3=function(x)
{ return(sum(x%%2==0)) }

x=1:10
cat("counteven1:",counteven1(x),"\n")
cat("counteven2:",counteven2(x),"\n")
cat("counteven3:",counteven3(x),"\n")

2.5

DIR="" # change to other directory if needed
pdf(paste(DIR,"maxsin.pdf",sep=""),width=5,height=5) # create

PDF
D=8 # number of binary digits, the dimension
x=0:(2^D-1);y=sin(pi*x/2

^D)
plot(x,y,type="l",ylab="evaluation function",

xlab="search space",lwd=2)
pmax=c(x[which.max(y)],max(y)) # set the maximum point
points(pmax[1],pmax[2],pch=19,lwd=2) # plot the maximum
legend("topright","optimum",pch=19,lwd=2) # add a legend
dev.off() # close the graphical device

2.6

1
install.packages("RCurl") # if needed, install the package
library(RCurl)
2
fires=getURL("http://archive.ics.uci.edu/ml/

machine-learning-databases/forest-fires/forestfires.csv")
write(fires,file="forestfires.csv") # write to working directory
3, read file:
fires=read.table("forestfires.csv",header=TRUE,sep=",")
4
aug=fires$temp[fires$month=="aug"]
cat("mean temperature in Aug.:",mean(aug),"\n")
5
feb=fires$temp[fires$month=="feb"]
jul=fires$temp[fires$month=="jul"]
sfeb=sample(feb,10)
sjul=sample(jul,10)
saug=sample(aug,10)
p1=t.test(saug,sfeb)$p.value
p2=t.test(saug,sjul)$p.value
p3=t.test(sjul,sfeb)$p.value

Solutions 155

cat("p-values (Aug-Feb,Aug-Jul,Jul-Feb):",
round(c(p1,p2,p3),digits=2),"\n")

6
aug100=fires[fires$month=="aug"&fires$area>100,]
print(aug100)
7
write.table(aug100,"aug100.csv",sep=",",row.names=FALSE)

Exercises of Chap. 3

3.1

source("blind.R") # load the blind search methods

binint=function(x,D)
{ x=rev(intToBits(x)[1:D]) # get D bits
remove extra 0s from raw type:
as.numeric(unlist(strsplit(as.character(x),""))[(1:D)*2])

}
intbin=function(x) sum(2^(which(rev(x==1))-1))
maxsin=function(x,Dim) sin(pi*(intbin(x))/(2

^Dim))

D=16 # number of dimensions

blind search:
PTM=proc.time() # start clock
x=0:(2^D-1) # integer search space
search=t(sapply(x,binint,D=D))
S=fsearch(search,maxsin,"max",D) # full search
sec=(proc.time()-PTM)[3] # get seconds elapsed
cat("fsearch s:",S$sol,"f:",S$eval,"time:",sec,"s\n")

adapted grid search:
N=1000
PTM=proc.time() # start clock
x=seq(0,2^D-1,length.out=N)
search=t(sapply(x,binint,D=D))
S=fsearch(search,maxsin,"max",D) # grid
sec=(proc.time()-PTM)[3] # get seconds elapsed
cat("gsearch s:",S$sol,"f:",S$eval,"time:",sec,"s\n")

adapted monte carlo search:
PTM=proc.time() # start clock
x=sample(0:2^D-1,N)
search=t(sapply(x,binint,D=D))
S=fsearch(search,maxsin,"max",D) # grid
sec=(proc.time()-PTM)[3] # get seconds elapsed
cat("mcsearch s:",S$sol,"f:",S$eval,"time:",sec,"s\n")

156 Solutions

3.2

source("blind.R") # load the blind search methods
source("grid.R") # load the grid search methods
source("functions.R") # load the profit function

D=5 # number of dimensions
grid search code:
S1=gsearch(rep(11,D),rep(350,D),rep(450,D),profit,"max")
cat("gsearch s:",round(S$sol),"f:",S$eval,"\n")

dfsearch code:
domain=vector("list",D)
for(i in 1:D) domain[[i]]=seq(350,450,by=11)
S=dfsearch(domain=domain,FUN=profit,type="max")
cat("dfsearch s:",round(S$sol),"f:",S$eval,"\n")

3.3

source("blind.R") # load the blind search methods
source("montecarlo.R") # load the monte carlo method

rastrigin=function(x) 10*length(x)+sum(x
^2-10*cos(2*pi*x))

experiment setup parameters:
D=30
Runs=30
N=10^c(2,3,4) # number of samples

perform all monte carlo searches:
S=matrix(nrow=Runs,ncol=length(N))
for(j in 1:length(N)) # cycle all number of samples
for(i in 1:Runs) # cycle all runs

S[i,j]=mcsearch(N[j],rep(-5.2,D),rep(5.2,D),
rastrigin,"min")$eval

compare average results:
p21=t.test(S[,2],S[,1])$p.value
p31=t.test(S[,3],S[,2])$p.value
cat("N=",N,"\n")
cat("average f:",apply(S,2,mean),"\n")
cat("p-value (N=",N[2],"vs N=",N[1],")=",

round(p21,digits=2),"\n")
cat("p-value (N=",N[3],"vs N=",N[2],")=",

round(p31,digits=2),"\n")
boxplot(S[,1],S[,2],S[,3],names=paste("N=",N,sep=""))

Exercises of Chap. 4

4.1

steepest ascent hill climbing method:
hclimbing=function(par,fn,change,lower,upper,control,

type="min",...)

Solutions 157

{ fpar=fn(par,...)
for(i in 1:control$maxit)

{
par1=change(par,lower,upper)
fpar1=fn(par1,...)
if(control$N>0) # steepest ascent code
{ for(j in 1:control$N-1)

{ cand=change(par,lower,upper)
fcand=fn(cand,...)
if((type=="min" && fcand<fpar1)

|| (type=="max" && fcand>fpar1))
{par1=cand;fpar1=fcand}

}
}
if(control$REPORT>0 &&(i==1||i%%control$REPORT==0))
cat("i:",i,"s:",par,"f:",fpar,"s’",par1,"f:",fpar1,"\n")

if((type=="min" && fpar1<fpar)
|| (type=="max" && fpar1>fpar)) { par=par1;fpar=fpar1 }

}
if(control$REPORT>=1) cat("best:",par,"f:",fpar,"\n")
return(list(sol=par,eval=fpar))

}

4.2

source("hill.R") # load the hill climbing methods

intbin=function(x) sum(2^(which(rev(x==1))-1))
maxsin=function(x) sin(pi*(intbin(x))/(2

^D))
D=16 # number of dimensions
s=rep(0,D) # initial search point

hill climbing:
maxit=20
C=list(maxit=maxit,REPORT=0) # maximum of 10 iterations
ichange=function(par,lower,upper) # integer change
{hchange(par,lower,upper,rnorm,mean=0,sd=1) }
b=hclimbing(s,maxsin,change=ichange,lower=rep(0,D),
upper=rep(1,D),

control=C,type="max")
cat("hill b:",b$sol,"f:",b$eval,"\n")

simulated annealing:
eval=function(x) -maxsin(x)
ichange2=function(par) # integer change
{D=length(par);hchange(par,lower=rep(0,D),upper=rep(1,D),rnorm,

mean=0,sd=1)}
C=list(maxit=maxit)
b=optim(s,eval,method="SANN",gr=ichange2,control=C)
cat("sann b:",b$par,"f:",abs(b$value),"\n")

tabu search:
b=tabuSearch(size=D,iters=maxit,objFunc=maxsin,config=s,neigh=4,

listSize=8)

158 Solutions

ib=which.max(b$eUtilityKeep) # best index
cat("tabu b:",b$configKeep[ib,],"f:",b$eUtilityKeep[ib],"\n")

4.3

library(tabuSearch) # get tabuSearch

rastrigin=function(x) f=10*length(x)+sum(x
^2-10*cos(2*pi*x))

intbin=function(x) # convert binary to integer
{ sum(2^(which(rev(x==1))-1)) } # explained in Chapter 3
breal=function(x) # convert binary to D real values
{ # note: D and bits need to be set outside this function
s=vector(length=D)
for(i in 1:D) # convert x into s:
{ ini=(i-1)*bits+1;end=ini+bits-1

n=intbin(x[ini:end])
s[i]=lower+n*drange/2

^bits
}
return(s)

}
note: tabuSearch does not work well with negative evaluations
to solve this drawback, a MAXIMUM constant is defined
MAXIMUM=10000
brastrigin=function(x) MAXIMUM-rastrigin(breal(x)) # max. goal

D=8;MAXIT=500
bits=8 # per dimension
size=D*bits
lower=-5.2;upper=5.2;drange=upper-lower
s=sample(0:1,size=size,replace=TRUE)
b=tabuSearch(size=size,iters=MAXIT,objFunc=brastrigin,config=s,

neigh=bits,listSize=bits,nRestarts=1)
ib=which.max(b$eUtilityKeep) # best index
cat("b:",b$configKeep[ib,],"f:",MAXIMUM-b$eUtilityKeep[ib],"\n")

Exercises of Chap. 5

5.1

library(genalg) # get rba.bin

intbin=function(x) sum(2^(which(rev(x==1))-1))
maxsin=function(x) -sin(pi*(intbin(x))/(2

^D))
D=16 # number of dimensions

genetic algorithm:
GA=rbga.bin(size=D,popSize=20,iters=100,zeroToOneRatio=1,

evalFunc=maxsin,elitism=1)

Solutions 159

b=which.min(GA$evaluations) # best individual
cat("best:",GA$population[b,],"f:",-GA$evaluations[b],"\n")

5.2

library(pso)
library(copulaedas)
source("blind.R") # get fsearch
source("montecarlo.R") # get mcsearch

evaluation function: -------------------------------------
eggholder=function(x) # length of x is 2
{ x=ifelse(x<lower[1],lower[1],x) # (only due to EDA):
x=ifelse(x>upper[1],upper[1],x) # bound if needed
f=(-(x[2]+47)*sin(sqrt(abs(x[2]+x[1]/2+47)))

-x[1]*sin(sqrt(abs(x[1]-(x[2]+47))))
)

global assignment code: <<-
EV<<-EV+1 # increase evaluations
if(f<BEST) BEST<<-f # minimum value
if(EV<=MAXFN) F[EV]<<-BEST
return(f)

}

auxiliary functions: ------------------------------------
crun2=function(method,f,lower,upper,LP,maxit,MAXFN) # run a

method
{ if(method=="MC")

{
s=runif(D,lower[1],upper[1]) # initial search point
mcsearch(MAXFN,lower=lower,upper=upper,FUN=eggholder)

}
else if(method=="PSO")

{ C=list(maxit=maxit,s=LP,type="SPSO2011")
psoptim(rep(NA,length(lower)),fn=f,

lower=lower,upper=upper,control=C)
}

else if(method=="EDA")
{ setMethod("edaTerminate","EDA",edaTerminateMaxGen)
DVEDA=VEDA(vine="DVine",indepTestSigLevel=0.01,

copulas = c("normal"),margin = "norm")
DVEDA@name="DVEDA"
edaRun(DVEDA,f,lower,upper)

}
}

successes=function(x,LIM,type="min") # number of successes
{ if(type=="min") return(sum(x<LIM)) else return(sum(x>LIM)) }

ctest2=function(Methods,f,lower,upper,type="min",Runs, # test
D,MAXFN,maxit,LP,pdf,main,LIM) # all methods:

{ RES=vector("list",length(Methods)) # all results
VAL=matrix(nrow=Runs,ncol=length(Methods)) # best values
for(m in 1:length(Methods)) # initialize RES object

160 Solutions

RES[[m]]=matrix(nrow=MAXFN,ncol=Runs)

for(R in 1:Runs) # cycle all runs
for(m in 1:length(Methods))
{ EV<<-0; F<<-rep(NA,MAXFN) # reset EV and F
if(type=="min") BEST<<-Inf else BEST<<- -Inf # reset BEST
suppressWarnings(crun2(Methods[m],f,lower,upper,LP,maxit,

MAXFN))
RES[[m]][,R]=F # store all best values
VAL[R,m]=F[MAXFN] # store best value at MAXFN
}

compute average F result per method:
AV=matrix(nrow=MAXFN,ncol=length(Methods))
for(m in 1:length(Methods))

for(i in 1:MAXFN)
AV[i,m]=mean(RES[[m]][i,])

show results:
cat(main,"\n",Methods,"\n")
cat(round(apply(VAL,2,mean),digits=0)," (average best)\n")
cat(round(100*apply(VAL,2,successes,LIM,type)/Runs,

digits=0)," (%successes)\n")

create pdf file:
pdf(paste(pdf,".pdf",sep=""),width=5,height=5,paper="special")
par(mar=c(4.0,4.0,1.8,0.6)) # reduce default plot margin
MIN=min(AV);MAX=max(AV)
use a grid to improve clarity:
g1=seq(1,MAXFN,length.out=500) # grid for lines
plot(g1,AV[g1,1],ylim=c(MIN,MAX),type="l",lwd=2,main=main,

ylab="average best",xlab="number of evaluations")
for(i in 2:length(Methods)) lines(g1,AV[g1,i],lwd=2,lty=i)
if(type=="min") position="topright" else position="bottomright"
legend(position,legend=Methods,lwd=2,lty=1:length(Methods))
dev.off() # close the PDF device

}

define EV, BEST and F:
MAXFN=1000
EV=0;BEST=Inf;F=rep(NA,MAXFN)
define method labels:
Methods=c("MC","PSO","EDA")
eggholder comparison: -----------------------------------
Runs=10; D=2; LP=20; maxit=50
lower=rep(-512,D);upper=rep(512,D)
ctest2(Methods,eggholder,lower,upper,"min",Runs,D,MAXFN,
maxit,LP,

"comp-eggholder","eggholder (D=2)",-950)

5.3

source("functions.R") # bag prices functions
library(copulaedas) # EDA

auxiliary functions: ------------------------------------

Solutions 161

returns TRUE if prices are sorted in descending order
prices_ord=function(x)
{ d=diff(x) # d lagged differences x(i+1)-x(i)
if(sum(d>=0)) return (FALSE) else return (TRUE)

}
ord_prices=function(x)
{ x=sort(x,decreasing=TRUE) # sort x
x is sorted but there can be ties:
k=2 # remove ties by removing $1
while(!prices_ord(x)) # at each iteration

{ if(x[k]==x[k-1]) x[k]=x[k]-1
k=k+1

}
return(x)

}

evaluation function: ------------------------------------
cprofit3=function(x) # bag prices with death penalty
{ x=round(x,digits=0) # convert x into integer
x=ifelse(x<1,1,x) # assure that x is within
x=ifelse(x>1000,1000,x) # the [1,1000] bounds
if(!prices_ord(x)) res=Inf # if needed, death penalty!!!
else

{
s=sales(x);c=cost(s);profit=sum(s*x-c)
if needed, store best value
if(profit>BEST) { BEST<<-profit; B<<-x}
res=-profit # minimization task!
}

EV<<-EV+1 # increase evaluations
if(EV<=MAXFN) F[EV]<<-BEST
return(res)

}
example of a very simple and fast repair of a solution:
sort the solution values!
localRepair2=function(eda, gen, pop, popEval, f, lower, upper)
{
for(i in 1:nrow(pop))
{ x=pop[i,]
x=round(x,digits=0) # convert x into integer
x=ifelse(x<lower[1],lower[1],x) # assure x within
x=ifelse(x>upper[1],upper[1],x) # bounds
if(!prices_ord(x)) x=ord_prices(x) # order x
pop[i,]=x;popEval[i]=f(x) # replace x in population

}
return(list(pop=pop,popEval=popEval))

}

experiment: --
MAXFN=5000
Runs=50; D=5; LP=50; maxit=100
lower=rep(1,D);upper=rep(1000,D)

162 Solutions

Methods=c("Death","Repair")
setMethod("edaTerminate","EDA",edaTerminateMaxGen)
UMDA=CEDA(copula="indep",margin="norm"); UMDA@name="UMDA"

RES=vector("list",length(Methods)) # all results
VAL=matrix(nrow=Runs,ncol=length(Methods)) # best values
for(m in 1:length(Methods)) # initialize RES object

RES[[m]]=matrix(nrow=MAXFN,ncol=Runs)
for(R in 1:Runs) # cycle all runs
{

B=NA;EV=0; F=rep(NA,MAXFN); BEST= -Inf # reset vars.
setMethod("edaOptimize","EDA",edaOptimizeDisabled)
setMethod("edaTerminate","EDA",edaTerminateMaxGen)
suppressWarnings(edaRun(UMDA,cprofit3,lower,upper))
RES[[1]][,R]=F # store all best values
VAL[R,1]=F[MAXFN] # store best value at MAXFN

B=NA;EV=0; F=rep(NA,MAXFN); BEST= -Inf # reset vars.
set local repair search method:
setMethod("edaOptimize","EDA",localRepair2)
set additional termination criterion:
setMethod("edaTerminate","EDA",

edaTerminateCombined(edaTerminateMaxGen,
edaTerminateEvalStdDev))

this edaRun might produces warnings or errors:
suppressWarnings(try(edaRun(UMDA,cprofit3,lower,upper),

silent=TRUE))
if(EV<MAXFN) # if stopped due to EvalStdDev

F[(EV+1):MAXFN]=rep(F[EV],MAXFN-EV) # replace NAs
RES[[2]][,R]=F # store all best values
VAL[R,2]=F[MAXFN] # store best value at MAXFN

}

compute average F result per method:
MIN=Inf
AV=matrix(nrow=MAXFN,ncol=length(Methods))
for(m in 1:length(Methods))
for(i in 1:MAXFN)
{
AV[i,m]=mean(RES[[m]][i,])
update MIN for plot (different than -Inf):
if(AV[i,m]!=-Inf && AV[i,m]<MIN) MIN=AV[i,m]

}
show results:
cat(Methods,"\n")
cat(round(apply(VAL,2,mean),digits=0)," (average best)\n")
Mann-Whitney non-parametric test:
p=wilcox.test(VAL[,1],VAL[,2],paired=TRUE)$p.value
cat("p-value:",round(p,digits=2),"(<0.05)\n")

create PDF file:
pdf("comp-bagprices-constr2.pdf",width=5,height=5,

paper="special")

Solutions 163

par(mar=c(4.0,4.0,1.8,0.6)) # reduce default plot margin
use a grid to improve clarity:
g1=seq(1,MAXFN,length.out=500) # grid for lines
MAX=max(AV)
plot(g1,AV[g1,2],ylim=c(MIN,MAX),type="l",lwd=2,

main="bag prices with constraint 2",
ylab="average best",xlab="number of evaluations")

lines(g1,AV[g1,1],lwd=2,lty=2)
legend("bottomright",legend=rev(Methods),lwd=2,lty=1:4)
dev.off() # close the PDF device

5.4

library(rgp) # load rgp

auxiliary functions:
eggholder=function(x) # length of x is 2
f=(-(x[2]+47)*sin(sqrt(abs(x[2]+x[1]/2+47)))

-x[1]*sin(sqrt(abs(x[1]-(x[2]+47))))
)

fwrapper=function(x,f)
{ res=suppressWarnings(f(x[1],x[2]))
if NaN is generated (e.g. sqrt(-1)) then
if(is.nan(res)) res=Inf # replace by Inf
return(res)

}

configuration of the genetic programming:
ST=inputVariableSet("x1","x2")
cF1=constantFactorySet(function() sample(c(2,47),1))
FS=functionSet("+","-","/","sin","sqrt","abs")
set the input samples:
samples=500
domain=matrix(ncol=2,nrow=samples)
domain[]=runif(samples,-512,512)
eval=function(f) # evaluation function
mse(apply(domain,1,eggholder),apply(domain,1,fwrapper,f))

run the genetic programming:
gp=geneticProgramming(functionSet=FS,inputVariables=ST,

constantSet=cF1,populationSize=100,
fitnessFunction=eval,
stopCondition=makeTimeStopCondition(20),
verbose=TRUE)

show the results:
b=gp$population[[which.min(gp$fitnessValues)]]
cat("best solution (f=",eval(b),"):\n")
print(b)
L1=apply(domain,1,eggholder)
L2=apply(domain,1,fwrapper,b)
sort L1 and L2 (according to L1 indexes)
for an easier comparison of both curves:
L1=sort.int(L1,index.return=TRUE)
L2=L2[L1$ix]

164 Solutions

L1=L1$x
MIN=min(L1,L2);MAX=max(L1,L2)
plot(L1,ylim=c(MIN,MAX),type="l",lwd=2,lty=1,

xlab="points",ylab="function values")
lines(L2,type="l",lwd=2,lty=2)
legend("bottomright",leg=c("eggholder","GP function"),lwd=2,lty

=1:2)
note: the fit is not perfect, but the search space is
too large

Exercises of Chap. 6

6.1

source("hill.R") # load the blind search methods
source("mo-tasks.R") # load MO bag prices task
source("lg-ga.R") # load tournament function

lexicographic hill climbing, assumes minimization goal:
lhclimbing=function(par,fn,change,lower,upper,control,

...)
{
for(i in 1:control$maxit)

{
par1=change(par,lower,upper)
if(control$REPORT>0 &&(i==1||i%%control$REPORT==0))

cat("i:",i,"s:",par,"f:",eval(par),"s’",par1,"f:",
eval(par1),"\n")

pop=rbind(par,par1) # population with 2 solutions
I=tournament(pop,fn,k=2,n=1,m=2)
par=pop[I,]

}
if(control$REPORT>=1) cat("best:",par,"f:",eval(par),"\n")
return(list(sol=par,eval=eval(par)))

}

lexico. hill climbing for all bag prices, one run:
D=5; C=list(maxit=10000,REPORT=10000) # 10000 iterations
s=sample(1:1000,D,replace=TRUE) # initial search
ichange=function(par,lower,upper) # integer value change
{ hchange(par,lower,upper,rnorm,mean=0,sd=1) }
LEXI=c(0.1,0.1) # explicitly defined lexico. tolerances
eval=function(x) c(-profit(x),produced(x))
b=lhclimbing(s,fn=eval,change=ichange,lower=rep(1,D),

upper=rep(1000,D),control=C)
cat("final ",b$sol,"f(",profit(b$sol),",",produced(b$sol),")\n")

Solutions 165

6.2

library(genalg) # load rbga function
library(mco) # load nsga2 function

set.seed(12345) # set for replicability

real value FES2 benchmark:
fes2=function(x)
{ D=length(x);f=rep(0,3)

for(i in 1:D)
{
f[1]=f[1]+(x[i]-0.5*cos(10*pi/D)-0.5)

^2
f[2]=f[2]+abs(x[i]-(sin(i-1))^2*(cos(i-1)

^2))^0.5
f[3]=f[3]+abs(x[i]-0.25*cos(i-1)*cos(2*i-2)-0.5)

^0.5
}

return(f)
}

D=8;m=3

WBGA execution:
evaluation function for WBGA
(also used to print and get last population fes2 values:
WBGA chromosome used: x=(w1,w2,w3,v1,v2,v3,...,vD)
where w_i are the weights and v_j the values
eval=function(x,REPORT=FALSE)
{ D=length(x)/2
normalize weights, such that sum(w)=1
w=x[1:m]/sum(x[1:m]);v=x[(m+1):length(x)];f=fes2(v)
if(REPORT)

{ cat("w:",round(w,2),"v:",round(v,2),"f:",round(f,2),"\n")
return(f)

}
else return(sum(w*f))

}
WBGA=rbga(evalFunc=eval,

stringMin=rep(0,D*2),stringMax=rep(1,D*2),
popSize=20,iters=100)

print("WBGA last population:")
S1 contains last population fes2 values in individuals x

objectives
S1=t(apply(WBGA$population,1,eval,REPORT=TRUE))
LS1=nrow(S1)

NSGA-II execution:
NSGA2=nsga2(fn=fes2,idim=D,odim=m,

lower.bounds=rep(0,D),upper.bounds=rep(1,D),
popsize=20,generations=100)

S2=NSGA2$value[NSGA2$pareto.optimal,]
print("NSGA2 last Pareto front:")
print(S2)
LS2=nrow(S2)

166 Solutions

Comparison of results:
library(scatterplot3d)
S=data.frame(rbind(S1,S2))
names(S)=c("f1","f2","f3")
col=c(rep("gray",LS1),rep("black",LS2))
nice scatterplot3d
WBGA points are in gray
NSGA2 points are in black
NSGA2 produces a more disperse and interesting
Pareto front when compared with WBGA
scatterplot3d(S,pch=16,color=col)

Exercises of Chap. 7

7.1
cycle crossover (CX) operator:
m is a matrix with 2 parent x ordered solutions
cx=function(m)
{
N=ncol(m)
c=matrix(rep(NA,N*2),ncol=N)
stop=FALSE
k=1
ALL=1:N
while(length(ALL)>0)
{
i=ALL[1]
perform a cycle:
base=m[1,i];vi=m[2,i]
I=i
while(vi!=base)
{
i=which(m[1,]==m[2,i])
vi=m[2,i]
I=c(I,i)

}
ALL=setdiff(ALL,I)
if(k%%2==1) c[,I]=m[,I] else c[,I]=m[2:1,I]
k=k+1
}
return(c)

}

example of CX operator:
m=matrix(ncol=9,nrow=2)
m[1,]=1:9
m[2,]=c(9,8,1,2,3,4,5,6,7)
print(m)
print("---")
print(cx(m))

Solutions 167

7.2

this solution assumes that file "tsp.R" has already been
executed

source("oea.R") # load ordered evolutionary algorithm
source("s7-1.R") # get the cycle operator

random mutation
randomm=function(s)
{ return(switch(sample(1:3,1),exchange(s),insertion(s),

displacement(s))) }

random crossover
randomx=function(m)
{ return(switch(sample(1:3,1),pmx(m),ox(m),cx(m))) }

Methods=c("new SANN","new EA")
new SANN:
cat("new SANN run:\n")
set.seed(12345) # for replicability
s=sample(1:N,N) # initial solution
EV=0; BEST=Inf; F=rep(NA,MAXIT) # reset these vars.
C=list(maxit=MAXIT,temp=2000,trace=TRUE,REPORT=MAXIT)
PTM=proc.time() # start clock
SANN=optim(s,fn=tour,gr=randomm,method="SANN",control=C)
sec=(proc.time()-PTM)[3] # get seconds elapsed
cat("time elapsed:",sec,"\n")
RES[,1]=F
cat("tour distance:",tour(SANN$par),"\n")

new EA:
cat("new EA run:\n")
set.seed(12345) # for replicability
EV=0; BEST=Inf; F=rep(NA,MAXIT) # reset these vars.
pSize=30;iters=ceiling((MAXIT-pSize)/(pSize-1))
PTM=proc.time() # start clock
OEA=oea(size=N,popSize=pSize,iters=iters,evalFunc=tour,crossfunc

=randomx,mutfunc=randomm,REPORT=iters,elitism=1)
sec=(proc.time()-PTM)[3] # get seconds elapsed
cat("time elapsed:",sec,"\n")
RES[,2]=F
cat("tour distance:",tour(OEA$population[which.min(OEA$

evaluations),]),"\n")

there is no improvement when compared with "tsp.R" file

7.3

this solution assumes that file "tsf.R" has already been
executed

library(pso) # load pso

168 Solutions

evaluation function of arma coefficients:
evalarma=function(s)
{ a=suppressWarnings(arima(sunspots,order=c(AR,0,MA),fixed=s))
R=a$residuals[INIT:length(sunspots)]
R=maeres(R)
if(is.nan(R)) R=Inf # death penalty
return(maeres(R))

}

AR=2;MA=1
maxit=100; LP=50
meants=mean(sunspots);K=0.1*meants
lower=c(rep(-1,(AR+MA)),meants-K)
upper=c(rep(1,(AR+MA)),meants+K)
C=list(maxit=maxit,s=LP,trace=10,REPORT=10)
set.seed(12345) # set for replicability
PSO=psoptim(rep(NA,length(lower)),fn=evalarma,

lower=lower,upper=upper,control=C)
arima2=arima(sunspots,order=c(AR,0,MA),fixed=PSO$par)
print(arima2)
cat("pso fit MAE=",PSO$value,"\n")

one-step ahead predictions:
f3=rep(NA,forecasts)
for(h in 1:forecasts)
{ # execute arima with fixed coefficients but with more

in-samples:
arima1=arima(series[1:(LIN+h-1)],order=arima2$arma[c(1,3,2)],

fixed=arima2$coef)
f3[h]=forecast(arima1,h=1)$mean[1]

}
e3=maeres(outsamples-f3)
text3=paste("pso arima (MAE=",round(e3,digits=1),")",sep="")

show quality of one-step ahead forecasts:
ymin=min(c(outsamples,f1,f3))
ymax=max(c(outsamples,f1,f3))
par(mar=c(4.0,4.0,0.1,0.1))
plot(outsamples,ylim=c(ymin,ymax),type="b",pch=1,

xlab="time (years after 1980)",ylab="values",cex=0.8)
lines(f1,lty=2,type="b",pch=3,cex=0.5)
lines(f3,lty=3,type="b",pch=5,cex=0.5)
legend("topright",c("sunspots",text1,text3),lty=1:3,
pch=c(1,3,5))

7.4

this solution assumes that file "wine-quality.R" has already
been executed

reload wine quality dataset since a new quality is defined:
file="http://archive.ics.uci.edu/ml/machine-learning-databases/

wine-quality/winequality-white.csv"
d=read.table(file=file,sep=";",header=TRUE)

Solutions 169

convert the output variable into 3 classes of wine:
"bad" <- 3,4,5
"average" <- 6
"good" <- 7, 8 or 9
d$quality=cut(d$quality,c(0,5.5,6.5,10),c("bad","average",
"good"))

n=nrow(d) # total number of samples
ns=round(n*0.10) # select only 10% of the samples for a fast

demonstration
set.seed(12345) # for replicability
ALL=sample(1:n,ns) # contains 10% of the index samples
show a summary of the wine quality dataset (10%):
print(summary(d[ALL,]))
cat("output class distribuition (10% samples):\n")
print(table(d[ALL,]$quality)) # show distribution of classes

holdout split:
select training data (for fitting the model), 70%; and
test data (for estimating generalization capabilities), 30%.
H=holdout(d[ALL,]$quality,ratio=0.7)
cat("nr. training samples:",length(H$tr),"\n")
cat("nr. test samples:",length(H$ts),"\n")

new evaluation function:
x is in the form c(Gamma,C)
eval=function(x)
{ n=length(x)
gamma=2^x[1]
C=2^x[2]
inputs=1:maxinputs # use all inputs
attributes=c(inputs,output)
divert console:
sink is used to avoid kernlab ksvm messages in a few cases
sink(file=textConnection("rval","w",local = TRUE))
M=mining(quality�.,d[H$tr,attributes],method=c("kfold",3),

model="svm",search=gamma,mpar=c(C,NA))
sink(NULL) # restores console
AUC for the internal 3-fold cross-validation:
auc=as.numeric(mmetric(M,metric="AUCCLASS"))
auc now contains 3 values, the AUC for each class
auc1=1-auc # transform auc maximization into minimization goal
return(c(auc1))

}

NSGAII multi-objective optimization:
cat("NSGAII optimization:\n")
m=3 # four objectives: AUC for each class and number of features
lower=c(-15,-5)
upper=c(3,15)
PTM=proc.time() # start clock

170 Solutions

G=nsga2(fn=eval,idim=length(lower),odim=m,lower.bounds=lower,
upper.bounds=upper,popsize=12,generations=10)

sec=(proc.time()-PTM)[3] # get seconds elapsed
cat("time elapsed:",sec,"\n")

show the Pareto front:
I=which(G$pareto.optimal)
for(i in I)
{ x=G$par[i,]

n=length(x)
gamma=2^x[1]
C=2^x[2]
features=round(x[3:n])
inputs=which(features==1)
cat("gamma:",gamma,"C:",C,"; f=(",

1-G$value[i,1:3],")\n",sep=" ")
}

Pareto=1-G$value[I,] # AUC for each class
Pareto=data.frame(Pareto)
names(Pareto)=c("AUC bad","AUC average","AUC good")
sort Pareto according to f1:
S=sort.int(Pareto[,1],index.return=TRUE)
Pareto=Pareto[S$ix,]

library(scatterplot3d) # get scatterplot3d function
scatterplot3d(Pareto,xlab="f1",ylab="f2",zlab="f3",

pch=16,type="b")

looking at the Pareto front, the wine expert could
select the best model and then measure the performance
of such model on the test set...

Index

2
2-opt method, 119

A
adaptive start topology, 75
ant colony optimization, 73
applications, 2, 119
apply(), 23
ARIMA methodology, 134
arima(), 134
array, 14
as.character(), 34
as.numeric(), 26
AUC metric, 139
auto.arima(), 134

B
Baldwin effect, 6
barplot(), 11, 15
batch processing, 26
BFGS method, 50
binary encoding, 3
blind search, 5, 31
boxplot(), 15
branch and bound, 1
breadth-first search, 31

C
c(), 14
cat(), 21
ceiling(), 56
chisq.test(), 17
class(), 14
classification, 138

close(), 24
comparison of methods, 57, 84
Comprehensive R Archive Network

(CRAN), 2
Concorde algorithm, 119
conjugate gradients method, 50
constantFactorySet(), 93
constraints, 4, 88
copula, 79
copulaedas package, 79
cos(), 15
cycle operator, 146

D
data mining, 138
data.frame, 14
demo(), 12
demonstrative tasks, 7, 99
DEoptim package, 70
DEoptim(), 71
DEoptim.control(), 71
depth-first search, 31
dev.off(), 25
differential evolution, 3, 70
Displacement operator, 120
dist(), 128
diversification phase, 54

E
edaRun(), 80
Estimation of distribution algorithms

(EDA), 78
evaluation function, 3
evolutionary algorithm, 3, 64
evolutionary computation, 64

© Springer International Publishing Switzerland 2014
P. Cortez, Modern Optimization with R, Use R!, DOI 10.1007/978-3-319-08263-9

171

172 Index

example(), 12
Excel format, 25
exchange operator, 120
exercises, 29, 43, 61, 98, 117, 146

F
factor, 14
factorial(), 23
feature selection, 139
file(), 24
fit(), 143
for(), 20
forecast package, 134
forecast(), 136
function(), 21
functionSet(), 93

G
gArea(), 132
genalg package, 64, 102, 105
genetic algorithm, 3, 6, 64
genetic programming, 91
geneticProgramming(), 94
getAnywhere(), 26
getURL(), 25
getwd(), 13, 24
gray(), 69
grid search, 31, 36
guided search, 5

H
Hamiltonian cycle, 119
hard constrains, 4, 88
help(), 11
help.search(), 11
hill climbing, 45
hist(), 15
holdout(), 143

I
ifelse(), 47
inputVariableSet(), 93
insertion operator, 120
intensification phase, 54
interface with other languages, 27
intToBits(), 26, 34
is.matrix(x), 108
is.na(), 14
is.nan(), 14
is.null(), 14

J
jpeg(), 25

L
Lamarckian evolution, 6, 91, 125
legend(), 26
length(), 15
lexicographic approach, 104
library(), 12
linear programming, 1
lines(), 59
list, 14
load(), 24
local search, 45
ls(), 14

M
machine learning, 36, 138
mathematical function discovery, 92
matrix, 14
max(), 15
mco package, 110, 140
mean absolute error, 134
mean squared error, 94
mean(), 15
meanint(), 59
median(), 15
metaheuristics, 1
methods(), 26
mgraph(), 143
min(), 15
mining(), 143
Minitab format, 25
mmetric(), 143
model selection, 139
modern heuristics, 1
modern optimization, 1
monte carlo search, 40
mse(), 96
Multi-objective evolutionary algorithm,

110
multi-objective optimization, 4, 99
mutateSubtree(), 94
MySQL, 25

N
names(), 15
Nelder and Mead method, 50
nested grid search, 36
no free lunch theorem, 57

Index 173

NSGA-II, 110
nsga2(), 111

O
Object oriented programming, 80
Operations Research, 1
optim(), 50
optimization, 1
order crossover, 120
ordered, 14
ordered representation, 120

P
par(), 59
parallel computing, 26
Pareto front, 110
paretoSet(), 111
partially matched crossover, 120
particle swarm optimization, 3, 6, 74
pdf(), 25
pie(), 15
plot(), 14, 15
plot.DEoptim(), 72
plot.rbga(), 67
png(), 25
population based search, 63
predict(), 143
print(), 14
priori approach, 101
proc.time(), 39
pso package, 74
psoptim(), 76

R
R console, 11
R Control, 20
R GUI, 11
R installation, 11
R operators, 13
R tool, 2, 11
rbga(), 64, 102
rbga.bin(), 64, 102
read.csv(), 24
read.table(), 24
readLines(), 24
readWKT(), 132
real value encoding, 3
rep(), 21
repair, 5, 68, 88, 98
representation of a solution, 3

return(), 22
rev(), 34
rgeos package, 132
rgp package, 92, 134
rminer package, 59, 140
rnorm(), 14
ROC curve, 139
roulette wheel selection, 66
round(), 21
RStudio, 11
runif(), 14

S
S3 method, 67
S4 class, 80
sample(), 14
sapply(), 23
SAS XPORT format, 25
save(), 24
scatterplot3d(), 40
segments(), 59
seq(), 14
set.seed(), 14
setMethod(), 80
setwd(), 13
show(), 80
simulated annealing, 6, 50
sin(), 15
single-state search, 45
sink(), 24
slot, 80
soft constrains, 4
solve_TSP(), 128
sort(), 15
source(), 13
SPEA-2, 110
specificity, 139
spensitivity, 139
SPSS format, 25
sqrt(), 15
steepest ascent hill climbing, 46
stochastic hill climbing, 46
stochastic optimization, 6
str(), 14
strsplit(), 34
sum(), 15
summary(), 14
summary.DEoptim(), 72
summary.rbga(), 67
support vector machine, 139
suppressWarnings(), 73

174 Index

swarm intelligence, 73
switch(), 20

T
t(), 35
t.test(), 17
tabu search, 53
tabuSearch package, 54
tabuSearch(), 54
tan(), 15
taxonomy of optimization methods, 6
termination criteria, 6
tiff(), 25
time series, 133
time series forecasting, 133
Tinn-R, 11
tournament selection, 105
traveling salesman problem, 119
tree structure, 3
truncation selection, 79
try(), 91
TSP package, 128
TSP(), 128

U
uniform design search, 36
uniform distribution, 40
unlist(), 34

V
vector, 14
vignette(), 72
vines, 80

W
weight-based genetic algorithm (WBGA),

102
weighted-formula approach, 101
well known text (WKT) format, 132
which(), 15
which.max(), 15
which.mbin(), 15
while(), 20
wilcox.test(), 17
wireframe(), 15
writeLines(), 24

	Preface
	How to Read This Book
	Production

	Contents
	List of Figures
	List of Algorithms
	1 Introduction
	1.1 Motivation
	1.2 Why R?
	1.3 Representation of a Solution
	1.4 Evaluation Function
	1.5 Constraints
	1.6 Optimization Methods
	1.7 Demonstrative Problems

	2 R Basics
	2.1 Introduction
	2.2 Basic Objects and Functions
	2.3 Controlling Execution and Writing Functions
	2.4 Importing and Exporting Data
	2.5 Additional Features
	2.6 Command Summary
	2.7 Exercises

	3 Blind Search
	3.1 Introduction
	3.2 Full Blind Search
	3.3 Grid Search
	3.4 Monte Carlo Search
	3.5 Command Summary
	3.6 Exercises

	4 Local Search
	4.1 Introduction
	4.2 Hill Climbing
	4.3 Simulated Annealing
	4.4 Tabu Search
	4.5 Comparison of Local Search Methods
	4.6 Command Summary
	4.7 Exercises

	5 Population Based Search
	5.1 Introduction
	5.2 Genetic and Evolutionary Algorithms
	5.3 Differential Evolution
	5.4 Particle Swarm Optimization
	5.5 Estimation of Distribution Algorithm
	5.6 Comparison of Population Based Methods
	5.7 Bag Prices with Constraint
	5.8 Genetic Programming
	5.9 Command Summary
	5.10 Exercises

	6 Multi-Objective Optimization
	6.1 Introduction
	6.2 Multi-Objective Demonstrative Problems
	6.3 Weighted-Formula Approach
	6.4 Lexicographic Approach
	6.5 Pareto Approach
	6.6 Command Summary
	6.7 Exercises

	7 Applications
	7.1 Introduction
	7.2 Traveling Salesman Problem
	7.3 Time Series Forecasting
	7.4 Wine Quality Classification
	7.5 Command Summary
	7.6 Exercises

	References
	Solutions
	Exercises of Chap.2
	Exercises of Chap.3
	Exercises of Chap.4
	Exercises of Chap.5
	Exercises of Chap.6
	Exercises of Chap.7

	Index

